P. Dhanalakshmi, V. Venkatesh, P. Ranjit, N. Hemalatha, S. Divyapriya, Raman Sandhiya, Sumit Kushwaha, Asmita Marathe, Mekete Asmare Huluka
{"title":"机器学习在光电传感器矩阵跟踪太阳能多向模型中的应用","authors":"P. Dhanalakshmi, V. Venkatesh, P. Ranjit, N. Hemalatha, S. Divyapriya, Raman Sandhiya, Sumit Kushwaha, Asmita Marathe, Mekete Asmare Huluka","doi":"10.1155/2022/5756610","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a deep neural network (DNN) for forecasting the intra-day solar irradiance, photovoltaic PV plants, regardless of whether or not they have energy storage, can benefit from the work being done here. The proposed DNN utilises a number of different methodologies, two of which are cloud motion analysis and machine learning, in order to make forecasts regarding the climatological conditions of the future. In addition to this, the accuracy of the model was evaluated in light of the data sources that were easily accessible. In general, four different cases have been investigated. According to the findings, the DNN is capable of making more accurate and reliable predictions of the incoming solar irradiance than the persistent algorithm. This is the case across the board. Even without any actual data, the proposed model is considered to be state-of-the-art because it outperforms the current NWP forecasts for the same time horizon as those forecasts. When making predictions for the short term, using actual data to reduce the margin of error can be helpful. When making predictions for the long term, however, weather information can be beneficial.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Machine Learning in Multi-Directional Model to Follow Solar Energy Using Photo Sensor Matrix\",\"authors\":\"P. Dhanalakshmi, V. Venkatesh, P. Ranjit, N. Hemalatha, S. Divyapriya, Raman Sandhiya, Sumit Kushwaha, Asmita Marathe, Mekete Asmare Huluka\",\"doi\":\"10.1155/2022/5756610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a deep neural network (DNN) for forecasting the intra-day solar irradiance, photovoltaic PV plants, regardless of whether or not they have energy storage, can benefit from the work being done here. The proposed DNN utilises a number of different methodologies, two of which are cloud motion analysis and machine learning, in order to make forecasts regarding the climatological conditions of the future. In addition to this, the accuracy of the model was evaluated in light of the data sources that were easily accessible. In general, four different cases have been investigated. According to the findings, the DNN is capable of making more accurate and reliable predictions of the incoming solar irradiance than the persistent algorithm. This is the case across the board. Even without any actual data, the proposed model is considered to be state-of-the-art because it outperforms the current NWP forecasts for the same time horizon as those forecasts. When making predictions for the short term, using actual data to reduce the margin of error can be helpful. When making predictions for the long term, however, weather information can be beneficial.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5756610\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/5756610","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Application of Machine Learning in Multi-Directional Model to Follow Solar Energy Using Photo Sensor Matrix
In this paper, we introduce a deep neural network (DNN) for forecasting the intra-day solar irradiance, photovoltaic PV plants, regardless of whether or not they have energy storage, can benefit from the work being done here. The proposed DNN utilises a number of different methodologies, two of which are cloud motion analysis and machine learning, in order to make forecasts regarding the climatological conditions of the future. In addition to this, the accuracy of the model was evaluated in light of the data sources that were easily accessible. In general, four different cases have been investigated. According to the findings, the DNN is capable of making more accurate and reliable predictions of the incoming solar irradiance than the persistent algorithm. This is the case across the board. Even without any actual data, the proposed model is considered to be state-of-the-art because it outperforms the current NWP forecasts for the same time horizon as those forecasts. When making predictions for the short term, using actual data to reduce the margin of error can be helpful. When making predictions for the long term, however, weather information can be beneficial.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells