L. Mottram, Samuel Cafferkey, Amber R. Mason, T. Oulton, Shiyin Sun, D. Bailey, M. Stennett, N. Hyatt
{"title":"利用实验室x射线吸收光谱仪研究Fe - K-edge XANES形成物种的可行性","authors":"L. Mottram, Samuel Cafferkey, Amber R. Mason, T. Oulton, Shiyin Sun, D. Bailey, M. Stennett, N. Hyatt","doi":"10.3190/jgeosci.299","DOIUrl":null,"url":null,"abstract":"We demonstrate effective speciation of Fe in model compounds from analysis of the weak pre-edge features in Fe K-edge XANES spectra, with a commercially available laboratory X-ray spectrometer, using a spherically bent crystal analyser and a low-power X-ray tube, in Rowland circle geometry. Direct comparison with XANES data acquired from a third generation synchrotron bending magnet beamline, using the same specimens, validated quantitative agreement in determination of the total integrated intensity and centroid position of the pre-edge feature, which are a probe of the electronic configuration and symmetry of the absorber atom, and hence oxidation state and co-ordination number. This work opens the door to rapid and routine speciation studies of Fe by laboratory XANES, even for materials with relatively dilute absorber concentration of only a few mol. %.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"27-35"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A feasibility investigation of speciation by Fe K-edge XANES using a laboratory X-ray absorption spectrometer\",\"authors\":\"L. Mottram, Samuel Cafferkey, Amber R. Mason, T. Oulton, Shiyin Sun, D. Bailey, M. Stennett, N. Hyatt\",\"doi\":\"10.3190/jgeosci.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate effective speciation of Fe in model compounds from analysis of the weak pre-edge features in Fe K-edge XANES spectra, with a commercially available laboratory X-ray spectrometer, using a spherically bent crystal analyser and a low-power X-ray tube, in Rowland circle geometry. Direct comparison with XANES data acquired from a third generation synchrotron bending magnet beamline, using the same specimens, validated quantitative agreement in determination of the total integrated intensity and centroid position of the pre-edge feature, which are a probe of the electronic configuration and symmetry of the absorber atom, and hence oxidation state and co-ordination number. This work opens the door to rapid and routine speciation studies of Fe by laboratory XANES, even for materials with relatively dilute absorber concentration of only a few mol. %.\",\"PeriodicalId\":15957,\"journal\":{\"name\":\"Journal of Geosciences\",\"volume\":\"65 1\",\"pages\":\"27-35\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3190/jgeosci.299\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3190/jgeosci.299","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A feasibility investigation of speciation by Fe K-edge XANES using a laboratory X-ray absorption spectrometer
We demonstrate effective speciation of Fe in model compounds from analysis of the weak pre-edge features in Fe K-edge XANES spectra, with a commercially available laboratory X-ray spectrometer, using a spherically bent crystal analyser and a low-power X-ray tube, in Rowland circle geometry. Direct comparison with XANES data acquired from a third generation synchrotron bending magnet beamline, using the same specimens, validated quantitative agreement in determination of the total integrated intensity and centroid position of the pre-edge feature, which are a probe of the electronic configuration and symmetry of the absorber atom, and hence oxidation state and co-ordination number. This work opens the door to rapid and routine speciation studies of Fe by laboratory XANES, even for materials with relatively dilute absorber concentration of only a few mol. %.
期刊介绍:
The Journal of Geosciences is an international peer-reviewed journal published by the Czech Geological Society with support from the Czech Geological Survey. It accepts high-quality original research or review papers dealing with all aspects of the nature and origin of igneous and metamorphic rocks. The Journal focuses, mainly but not exclusively, on:
-Process-oriented regional studies of igneous and metamorphic complexes-
Research in structural geology and tectonics-
Igneous and metamorphic petrology-
Mineral chemistry and mineralogy-
Major- and trace-element geochemistry, isotope geochemistry-
Dating igneous activity and metamorphic events-
Experimental petrology and mineralogy-
Theoretical models of igneous and metamorphic processes-
Mineralizing processes and mineral deposits.
All the papers are written in English, even though they may be accompanied by an additional Czech abstract. Each contribution is a subject to peer review by at least two independent reviewers, typically at least one from abroad. The Journal appears 2 to 4 times a year. Formally it is divided in annual volumes, each of them including 4 issues.