阿尔及利亚社会运动开端的情感分析

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2023-02-22 DOI:10.1108/dta-10-2022-0406
Meriem Laifa, Djamila Mohdeb
{"title":"阿尔及利亚社会运动开端的情感分析","authors":"Meriem Laifa, Djamila Mohdeb","doi":"10.1108/dta-10-2022-0406","DOIUrl":null,"url":null,"abstract":"PurposeThis study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian Arabic tweets related to early days of the Algerian SM, called Hirak.Design/methodology/approachRelated tweets were retrieved using relevant hashtags followed by multiple data cleaning procedures. Foundational machine learning methods such as Naive Bayes, Support Vector Machine, Logistic Regression (LR) and Decision Tree were implemented. For each classifier, two feature extraction techniques were used and compared, namely Bag of Words and Term Frequency–Inverse Document Frequency. Moreover, three fine-tuned pretrained transformers AraBERT and DziriBERT and the multilingual transformer XLM-R were used for the comparison.FindingsThe findings of this paper emphasize the vital role social media played during the Hirak. Results revealed that most individuals had a positive attitude toward the Hirak. Moreover, the presented experiments provided important insights into the possible use of both basic machine learning and transfer learning models to analyze SA of Algerian text datasets. When comparing machine learning models with transformers in terms of accuracy, precision, recall and F1-score, the results are fairly similar, with LR outperforming all models with a 68 per cent accuracy rate.Originality/valueAt the time of writing, the Algerian SM was not thoroughly investigated or discussed in the Computer Science literature. This analysis makes a limited but unique contribution to understanding the Algerian Hirak using artificial intelligence. This study proposes what it considers to be a unique basis for comprehending this event with the goal of generating a foundation for future studies by comparing different SA techniques on a low-resource language.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment analysis of the Algerian social movement inception\",\"authors\":\"Meriem Laifa, Djamila Mohdeb\",\"doi\":\"10.1108/dta-10-2022-0406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian Arabic tweets related to early days of the Algerian SM, called Hirak.Design/methodology/approachRelated tweets were retrieved using relevant hashtags followed by multiple data cleaning procedures. Foundational machine learning methods such as Naive Bayes, Support Vector Machine, Logistic Regression (LR) and Decision Tree were implemented. For each classifier, two feature extraction techniques were used and compared, namely Bag of Words and Term Frequency–Inverse Document Frequency. Moreover, three fine-tuned pretrained transformers AraBERT and DziriBERT and the multilingual transformer XLM-R were used for the comparison.FindingsThe findings of this paper emphasize the vital role social media played during the Hirak. Results revealed that most individuals had a positive attitude toward the Hirak. Moreover, the presented experiments provided important insights into the possible use of both basic machine learning and transfer learning models to analyze SA of Algerian text datasets. When comparing machine learning models with transformers in terms of accuracy, precision, recall and F1-score, the results are fairly similar, with LR outperforming all models with a 68 per cent accuracy rate.Originality/valueAt the time of writing, the Algerian SM was not thoroughly investigated or discussed in the Computer Science literature. This analysis makes a limited but unique contribution to understanding the Algerian Hirak using artificial intelligence. This study proposes what it considers to be a unique basis for comprehending this event with the goal of generating a foundation for future studies by comparing different SA techniques on a low-resource language.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-10-2022-0406\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-10-2022-0406","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的本研究概述了情感分析在社会运动研究中的应用。它还比较了阿尔及利亚阿拉伯语tweet的SA任务的不同模型,这些tweet与阿尔及利亚SM的早期阶段有关,称为Hirak。设计/方法/方法使用相关标签检索相关推文,然后进行多个数据清理程序。基本的机器学习方法,如朴素贝叶斯,支持向量机,逻辑回归(LR)和决策树实现。对于每个分类器,使用了两种特征提取技术,即词袋和词频-逆文档频率。此外,三个微调预训练变压器AraBERT和DziriBERT和多语言变压器XLM-R被用于比较。这篇论文的发现强调了社交媒体在Hirak中扮演的重要角色。结果显示,大多数人对Hirak持积极态度。此外,所提出的实验为使用基本机器学习和迁移学习模型来分析阿尔及利亚文本数据集的SA提供了重要的见解。当将机器学习模型与变压器在准确性、精确度、召回率和f1分数方面进行比较时,结果相当相似,LR以68%的准确率优于所有模型。在撰写本文时,阿尔及利亚SM并没有在计算机科学文献中得到彻底的调查或讨论。这种分析对利用人工智能理解阿尔及利亚Hirak做出了有限但独特的贡献。本研究提出了它认为是理解这一事件的独特基础,目的是通过比较低资源语言上不同的SA技术,为未来的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment analysis of the Algerian social movement inception
PurposeThis study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian Arabic tweets related to early days of the Algerian SM, called Hirak.Design/methodology/approachRelated tweets were retrieved using relevant hashtags followed by multiple data cleaning procedures. Foundational machine learning methods such as Naive Bayes, Support Vector Machine, Logistic Regression (LR) and Decision Tree were implemented. For each classifier, two feature extraction techniques were used and compared, namely Bag of Words and Term Frequency–Inverse Document Frequency. Moreover, three fine-tuned pretrained transformers AraBERT and DziriBERT and the multilingual transformer XLM-R were used for the comparison.FindingsThe findings of this paper emphasize the vital role social media played during the Hirak. Results revealed that most individuals had a positive attitude toward the Hirak. Moreover, the presented experiments provided important insights into the possible use of both basic machine learning and transfer learning models to analyze SA of Algerian text datasets. When comparing machine learning models with transformers in terms of accuracy, precision, recall and F1-score, the results are fairly similar, with LR outperforming all models with a 68 per cent accuracy rate.Originality/valueAt the time of writing, the Algerian SM was not thoroughly investigated or discussed in the Computer Science literature. This analysis makes a limited but unique contribution to understanding the Algerian Hirak using artificial intelligence. This study proposes what it considers to be a unique basis for comprehending this event with the goal of generating a foundation for future studies by comparing different SA techniques on a low-resource language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1