{"title":"基于SA与极限平衡力学耦合的边坡稳定性分析","authors":"Guo Yunhong, Zhao Liang","doi":"10.13052/ejcm2642-2085.3221","DOIUrl":null,"url":null,"abstract":"The limit equilibrium strip method of slope has become mature, but because of the complexity of slope instability with many degrees of freedom and high nonlinear, a more three-dimensional and mature method is needed for slope problems. Based on the overall force balance and moment balance of slope, a unified model of three dimensional limit balance methods is established in this paper. Given different assumptions, the analytical expressions of each traditional model are obtained to avoid the problem of difficult boundary treatment when the original method is divided into bars and columns. The influence of the trailing edge point B and shear outlet A on the central axis of the sliding body, and the control arc radius variable t on the calculated value of the three-dimensional slope stability coefficient is discussed in detail. Then, based on the simulated annealing algorithm, the state generating function, state accepting function and temperature updating function are constructed, and the calculation method of optimizing the sliding surface search of the slope by using the simulated annealing algorithm is proposed, and the stability analysis of the slope of a hydropower reservoir dam area in Guangxi is carried out. The results show that the position of the sliding surface obtained by searching around the design value K = 1.10 is basically consistent with the actual one, which proves that the mechanical analysis method of coupling SA and limit equilibrium is convenient and efficient in the slope stability analysis.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slope Stability Analysis Based on the Coupling of SA and Limit Equilibrium Mechanics\",\"authors\":\"Guo Yunhong, Zhao Liang\",\"doi\":\"10.13052/ejcm2642-2085.3221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limit equilibrium strip method of slope has become mature, but because of the complexity of slope instability with many degrees of freedom and high nonlinear, a more three-dimensional and mature method is needed for slope problems. Based on the overall force balance and moment balance of slope, a unified model of three dimensional limit balance methods is established in this paper. Given different assumptions, the analytical expressions of each traditional model are obtained to avoid the problem of difficult boundary treatment when the original method is divided into bars and columns. The influence of the trailing edge point B and shear outlet A on the central axis of the sliding body, and the control arc radius variable t on the calculated value of the three-dimensional slope stability coefficient is discussed in detail. Then, based on the simulated annealing algorithm, the state generating function, state accepting function and temperature updating function are constructed, and the calculation method of optimizing the sliding surface search of the slope by using the simulated annealing algorithm is proposed, and the stability analysis of the slope of a hydropower reservoir dam area in Guangxi is carried out. The results show that the position of the sliding surface obtained by searching around the design value K = 1.10 is basically consistent with the actual one, which proves that the mechanical analysis method of coupling SA and limit equilibrium is convenient and efficient in the slope stability analysis.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.3221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Slope Stability Analysis Based on the Coupling of SA and Limit Equilibrium Mechanics
The limit equilibrium strip method of slope has become mature, but because of the complexity of slope instability with many degrees of freedom and high nonlinear, a more three-dimensional and mature method is needed for slope problems. Based on the overall force balance and moment balance of slope, a unified model of three dimensional limit balance methods is established in this paper. Given different assumptions, the analytical expressions of each traditional model are obtained to avoid the problem of difficult boundary treatment when the original method is divided into bars and columns. The influence of the trailing edge point B and shear outlet A on the central axis of the sliding body, and the control arc radius variable t on the calculated value of the three-dimensional slope stability coefficient is discussed in detail. Then, based on the simulated annealing algorithm, the state generating function, state accepting function and temperature updating function are constructed, and the calculation method of optimizing the sliding surface search of the slope by using the simulated annealing algorithm is proposed, and the stability analysis of the slope of a hydropower reservoir dam area in Guangxi is carried out. The results show that the position of the sliding surface obtained by searching around the design value K = 1.10 is basically consistent with the actual one, which proves that the mechanical analysis method of coupling SA and limit equilibrium is convenient and efficient in the slope stability analysis.