{"title":"机器人工业自动化仿真-解决冲突和死锁的优化","authors":"H. Fazlollahtabar, M. Saidi‐Mehrabad, E. Masehian","doi":"10.1108/aa-10-2019-0185","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to investigate the benefits of the turning point layout; a simulation model being applicable for strategic level is designed that compares systems with and without turning points. Specifically, the avoidance of deadlocks and prevention of conflicts is substantial.\n\n\nDesign/methodology/approach\nOptimization process for different layouts and configuration of autonomous guided vehicles (AGVs) are worked out using statistical methods for design parameters. Regression analysis is used to find effective design parameters and analysis of variance is applied for adjusting critical factors. Also, the optimal design is then implemented in a manufacturing system for an industrial automation and the results are reported.\n\n\nFindings\nThe outputs imply the effectiveness of the proposed approach for real industrial cases. This research will combine both simulation-based method and optimization technique to improve the quality of solutions.\n\n\nOriginality/value\nIn AGV systems, the begin-end combinations are usually connected by using a fixed layout, which is not the optimal path. The capability of these configurations is limited and often the conflict of multiple AGVs and deadlock are inevitable. By appearing more flexible layouts and advanced technology, the positioning and dispatching of AGVs increased. A new concept would be to determine each path dynamically. This would use the free paths for AGVs leading to overcome the conflicts and deadlocks.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic industrial automation simulation-optimization for resolving conflict and deadlock\",\"authors\":\"H. Fazlollahtabar, M. Saidi‐Mehrabad, E. Masehian\",\"doi\":\"10.1108/aa-10-2019-0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study is to investigate the benefits of the turning point layout; a simulation model being applicable for strategic level is designed that compares systems with and without turning points. Specifically, the avoidance of deadlocks and prevention of conflicts is substantial.\\n\\n\\nDesign/methodology/approach\\nOptimization process for different layouts and configuration of autonomous guided vehicles (AGVs) are worked out using statistical methods for design parameters. Regression analysis is used to find effective design parameters and analysis of variance is applied for adjusting critical factors. Also, the optimal design is then implemented in a manufacturing system for an industrial automation and the results are reported.\\n\\n\\nFindings\\nThe outputs imply the effectiveness of the proposed approach for real industrial cases. This research will combine both simulation-based method and optimization technique to improve the quality of solutions.\\n\\n\\nOriginality/value\\nIn AGV systems, the begin-end combinations are usually connected by using a fixed layout, which is not the optimal path. The capability of these configurations is limited and often the conflict of multiple AGVs and deadlock are inevitable. By appearing more flexible layouts and advanced technology, the positioning and dispatching of AGVs increased. A new concept would be to determine each path dynamically. This would use the free paths for AGVs leading to overcome the conflicts and deadlocks.\\n\",\"PeriodicalId\":55448,\"journal\":{\"name\":\"Assembly Automation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assembly Automation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/aa-10-2019-0185\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-10-2019-0185","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robotic industrial automation simulation-optimization for resolving conflict and deadlock
Purpose
The purpose of this study is to investigate the benefits of the turning point layout; a simulation model being applicable for strategic level is designed that compares systems with and without turning points. Specifically, the avoidance of deadlocks and prevention of conflicts is substantial.
Design/methodology/approach
Optimization process for different layouts and configuration of autonomous guided vehicles (AGVs) are worked out using statistical methods for design parameters. Regression analysis is used to find effective design parameters and analysis of variance is applied for adjusting critical factors. Also, the optimal design is then implemented in a manufacturing system for an industrial automation and the results are reported.
Findings
The outputs imply the effectiveness of the proposed approach for real industrial cases. This research will combine both simulation-based method and optimization technique to improve the quality of solutions.
Originality/value
In AGV systems, the begin-end combinations are usually connected by using a fixed layout, which is not the optimal path. The capability of these configurations is limited and often the conflict of multiple AGVs and deadlock are inevitable. By appearing more flexible layouts and advanced technology, the positioning and dispatching of AGVs increased. A new concept would be to determine each path dynamically. This would use the free paths for AGVs leading to overcome the conflicts and deadlocks.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.