V. Erofeev, S. Kaznacheev, E. Pankratova, V. Seleznev, T. P. Tyuryahina
{"title":"预粘合骨料复合材料的物理力学性能","authors":"V. Erofeev, S. Kaznacheev, E. Pankratova, V. Seleznev, T. P. Tyuryahina","doi":"10.22363/1815-5235-2022-18-5-399-406","DOIUrl":null,"url":null,"abstract":"New building materials and products in construction and reconstruction, which improve the performance and efficiency characteristics of buildings, reduce material consumption, cost and labor intensity, are always relevant. A promising direction for further development of composite materials is the employment of pre-bound aggregate materials. Their production is a two-stage process, which involves at first creating an optimal aggregate mix and gluing the grains to each other and secondly filling the voids of the obtained aggregate framework with a high-workability matrix. Presented research is an experimental investigation of physical and technical properties of pre-bound aggregate composite materials. Composites with complex binders are also considered in this study. In such cases, the aggregate framework and the grouting matrix were made of binders of different nature, which are incompatible when the components are mixed ordinarily. When studying composites, a complex of physical and mechanical methods was used. Improvement of physical and mechanical properties of framework composites in comparison with composites obtained according to conventional techno- logy has been established. These advantages are identified primarily for such properties as deformability, impact strength, creep.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physical and mechanical properties of pre-bound aggregate composites\",\"authors\":\"V. Erofeev, S. Kaznacheev, E. Pankratova, V. Seleznev, T. P. Tyuryahina\",\"doi\":\"10.22363/1815-5235-2022-18-5-399-406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New building materials and products in construction and reconstruction, which improve the performance and efficiency characteristics of buildings, reduce material consumption, cost and labor intensity, are always relevant. A promising direction for further development of composite materials is the employment of pre-bound aggregate materials. Their production is a two-stage process, which involves at first creating an optimal aggregate mix and gluing the grains to each other and secondly filling the voids of the obtained aggregate framework with a high-workability matrix. Presented research is an experimental investigation of physical and technical properties of pre-bound aggregate composite materials. Composites with complex binders are also considered in this study. In such cases, the aggregate framework and the grouting matrix were made of binders of different nature, which are incompatible when the components are mixed ordinarily. When studying composites, a complex of physical and mechanical methods was used. Improvement of physical and mechanical properties of framework composites in comparison with composites obtained according to conventional techno- logy has been established. These advantages are identified primarily for such properties as deformability, impact strength, creep.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2022-18-5-399-406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-5-399-406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical and mechanical properties of pre-bound aggregate composites
New building materials and products in construction and reconstruction, which improve the performance and efficiency characteristics of buildings, reduce material consumption, cost and labor intensity, are always relevant. A promising direction for further development of composite materials is the employment of pre-bound aggregate materials. Their production is a two-stage process, which involves at first creating an optimal aggregate mix and gluing the grains to each other and secondly filling the voids of the obtained aggregate framework with a high-workability matrix. Presented research is an experimental investigation of physical and technical properties of pre-bound aggregate composite materials. Composites with complex binders are also considered in this study. In such cases, the aggregate framework and the grouting matrix were made of binders of different nature, which are incompatible when the components are mixed ordinarily. When studying composites, a complex of physical and mechanical methods was used. Improvement of physical and mechanical properties of framework composites in comparison with composites obtained according to conventional techno- logy has been established. These advantages are identified primarily for such properties as deformability, impact strength, creep.