M. Umair, A. Ghaffar, Majeed A. S. Alkanhal, Ali H. Alqahtani, Y. Khan
{"title":"等离子体层包围铁氧体介质中的横向电表面波","authors":"M. Umair, A. Ghaffar, Majeed A. S. Alkanhal, Ali H. Alqahtani, Y. Khan","doi":"10.1186/s41476-020-00138-3","DOIUrl":null,"url":null,"abstract":"<p>The theoretical analysis of transverse electric surface waves in ferrite medium surrounded by isotropic plasma layers is presented in this manuscript. Maxwell’s equations in differential form are used, and we impose the boundary conditions to acquire the dispersion relation to formulate the proposed structure. The influence of number density, separation distance between the layers of plasma, and dielectric permittivity of ferrite film on the normalized propagation constant is studied. It is concluded from the result obtained that if the number density and values of dielectric permittivity of ferrite film increases the propagation constant <i>Re</i>(<i>β</i>) tends to decreases whereas the increase in separation distance between the layers of plasma tends to increase the propagation constant <i>Re</i>(<i>β</i>). Furthermore, to verify the surface waves, the normalized field distribution for plasma medium as well as ferrite medium are also presented in this manuscript. The present work has potential applications in communication, drug delivery, cancer treatment, and ferrite sensing waveguide structures in the GHz frequency regime.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00138-3","citationCount":"4","resultStr":"{\"title\":\"Transverse electric surface waves in ferrite medium surrounded by plasma layers\",\"authors\":\"M. Umair, A. Ghaffar, Majeed A. S. Alkanhal, Ali H. Alqahtani, Y. Khan\",\"doi\":\"10.1186/s41476-020-00138-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The theoretical analysis of transverse electric surface waves in ferrite medium surrounded by isotropic plasma layers is presented in this manuscript. Maxwell’s equations in differential form are used, and we impose the boundary conditions to acquire the dispersion relation to formulate the proposed structure. The influence of number density, separation distance between the layers of plasma, and dielectric permittivity of ferrite film on the normalized propagation constant is studied. It is concluded from the result obtained that if the number density and values of dielectric permittivity of ferrite film increases the propagation constant <i>Re</i>(<i>β</i>) tends to decreases whereas the increase in separation distance between the layers of plasma tends to increase the propagation constant <i>Re</i>(<i>β</i>). Furthermore, to verify the surface waves, the normalized field distribution for plasma medium as well as ferrite medium are also presented in this manuscript. The present work has potential applications in communication, drug delivery, cancer treatment, and ferrite sensing waveguide structures in the GHz frequency regime.</p>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41476-020-00138-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-020-00138-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00138-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Transverse electric surface waves in ferrite medium surrounded by plasma layers
The theoretical analysis of transverse electric surface waves in ferrite medium surrounded by isotropic plasma layers is presented in this manuscript. Maxwell’s equations in differential form are used, and we impose the boundary conditions to acquire the dispersion relation to formulate the proposed structure. The influence of number density, separation distance between the layers of plasma, and dielectric permittivity of ferrite film on the normalized propagation constant is studied. It is concluded from the result obtained that if the number density and values of dielectric permittivity of ferrite film increases the propagation constant Re(β) tends to decreases whereas the increase in separation distance between the layers of plasma tends to increase the propagation constant Re(β). Furthermore, to verify the surface waves, the normalized field distribution for plasma medium as well as ferrite medium are also presented in this manuscript. The present work has potential applications in communication, drug delivery, cancer treatment, and ferrite sensing waveguide structures in the GHz frequency regime.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.