Siphiwe Prudence Dlamini, A. O. Akanmu, O. Babalola
{"title":"健康玉米和北方玉米叶枯病根际微生物群功能多样性的变化","authors":"Siphiwe Prudence Dlamini, A. O. Akanmu, O. Babalola","doi":"10.3389/sjss.2023.10964","DOIUrl":null,"url":null,"abstract":"Metagenomics is a scientific breakthrough that can reveal the variations in the microbial diversities and functions between the healthy and diseased plants, towards a productive deployment in diverse biotechnological processes and agricultural activities. This study investigated the possible functional diversity in the rhizosphere microbiome of both healthy and Northern Corn Leaf Blight (NCLB) infected maize growing at farms in the Lichtenburg (LI) and Mafikeng (MA) areas of the North West Province, South Africa. We hypothesized variations in the abundance and diversities of microbial functions in the healthy (LI and MA) and diseased (LID and MAD) maize plants. Hence, we extracted DNA from the healthy and diseased maize rhizosphere in the two maize farms and sequenced using a shotgun approach. Using the SEED subsystem, we discovered that the healthy rhizosphere maize plant was dominated by 24 functional categories, while the NCLB infected rhizosphere maize plant was dominated by 4 functional categories. Alpha diversity analysis showed no significant (p > 0.05) difference between the healthy and diseased maize rhizosphere. However, the analysis of beta diversity showed a significant difference. The substantial abundance of functional groups detected especially in LI indicates that presence of plant diseases altered the functions of soil microbiomes. The significant abundance of the unknown role of rhizosphere microbiomes in disease management suggests the presence of some undiscovered functional genes associated with the microbiome of the healthy maize rhizosphere. Hence, further investigation is needed to explore the roles of these functional genes for their agricultural or biotechnological relevance.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in the Functional Diversity of Rhizosphere Microbiome of Healthy and Northern Corn Leaf Blight Infected Maize (Zea mays L.)\",\"authors\":\"Siphiwe Prudence Dlamini, A. O. Akanmu, O. Babalola\",\"doi\":\"10.3389/sjss.2023.10964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metagenomics is a scientific breakthrough that can reveal the variations in the microbial diversities and functions between the healthy and diseased plants, towards a productive deployment in diverse biotechnological processes and agricultural activities. This study investigated the possible functional diversity in the rhizosphere microbiome of both healthy and Northern Corn Leaf Blight (NCLB) infected maize growing at farms in the Lichtenburg (LI) and Mafikeng (MA) areas of the North West Province, South Africa. We hypothesized variations in the abundance and diversities of microbial functions in the healthy (LI and MA) and diseased (LID and MAD) maize plants. Hence, we extracted DNA from the healthy and diseased maize rhizosphere in the two maize farms and sequenced using a shotgun approach. Using the SEED subsystem, we discovered that the healthy rhizosphere maize plant was dominated by 24 functional categories, while the NCLB infected rhizosphere maize plant was dominated by 4 functional categories. Alpha diversity analysis showed no significant (p > 0.05) difference between the healthy and diseased maize rhizosphere. However, the analysis of beta diversity showed a significant difference. The substantial abundance of functional groups detected especially in LI indicates that presence of plant diseases altered the functions of soil microbiomes. The significant abundance of the unknown role of rhizosphere microbiomes in disease management suggests the presence of some undiscovered functional genes associated with the microbiome of the healthy maize rhizosphere. Hence, further investigation is needed to explore the roles of these functional genes for their agricultural or biotechnological relevance.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2023.10964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2023.10964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Variations in the Functional Diversity of Rhizosphere Microbiome of Healthy and Northern Corn Leaf Blight Infected Maize (Zea mays L.)
Metagenomics is a scientific breakthrough that can reveal the variations in the microbial diversities and functions between the healthy and diseased plants, towards a productive deployment in diverse biotechnological processes and agricultural activities. This study investigated the possible functional diversity in the rhizosphere microbiome of both healthy and Northern Corn Leaf Blight (NCLB) infected maize growing at farms in the Lichtenburg (LI) and Mafikeng (MA) areas of the North West Province, South Africa. We hypothesized variations in the abundance and diversities of microbial functions in the healthy (LI and MA) and diseased (LID and MAD) maize plants. Hence, we extracted DNA from the healthy and diseased maize rhizosphere in the two maize farms and sequenced using a shotgun approach. Using the SEED subsystem, we discovered that the healthy rhizosphere maize plant was dominated by 24 functional categories, while the NCLB infected rhizosphere maize plant was dominated by 4 functional categories. Alpha diversity analysis showed no significant (p > 0.05) difference between the healthy and diseased maize rhizosphere. However, the analysis of beta diversity showed a significant difference. The substantial abundance of functional groups detected especially in LI indicates that presence of plant diseases altered the functions of soil microbiomes. The significant abundance of the unknown role of rhizosphere microbiomes in disease management suggests the presence of some undiscovered functional genes associated with the microbiome of the healthy maize rhizosphere. Hence, further investigation is needed to explore the roles of these functional genes for their agricultural or biotechnological relevance.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.