Yang Zhang, Yueyu Gao, M. Wang, Lei Shi, Yuan Liu, Chunxiao Yan, Jinju Wang, Hungwe Justice Meluleki, Weitao Geng, Yanping Wang
{"title":"复合乳酸菌发酵剂生产的发酵大豆乳清显示出改善的风味和减轻右旋糖酐硫酸钠诱导的小鼠结肠炎的功能","authors":"Yang Zhang, Yueyu Gao, M. Wang, Lei Shi, Yuan Liu, Chunxiao Yan, Jinju Wang, Hungwe Justice Meluleki, Weitao Geng, Yanping Wang","doi":"10.1080/08905436.2022.2051539","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, Lactiplantibacillus plantarum BC299, Lactobacillus delbrueckii subsp. bulgaricus 717 and Streptococcus thermophilus 176 were used as combined starter cultures to produce a fermented soy whey beverage. The results showed that the fermentation of the combined starter cultures increased the content of lactic acid, acetic acid, succinic acid, and malic acid, while decreased the content of citric acid, fumaric acid and propionic acid. Meanwhile, the fermentation also effectively changed the proportion of volatile flavor substances. The higher sensory score of the fermented soy whey also confirmed the flavor improvement effect of the combined starter cultures. In addition, the in vivo results of animal experiments showed that the fermented soy whey could significantly improve the disease activity index (DAI) and colon morphology in dextran sulfate sodium (DSS) induced colitis mice. This study showed that the combined lactic acid bacteria starter cultures had important value-added relevance on the effective reuse of the soy whey by-product.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"36 1","pages":"113 - 132"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fermented soy whey produced by a combined lactic acid bacteria starter shows improved flavor and the function in alleviating dextran sulphate sodium induced colitis in mice\",\"authors\":\"Yang Zhang, Yueyu Gao, M. Wang, Lei Shi, Yuan Liu, Chunxiao Yan, Jinju Wang, Hungwe Justice Meluleki, Weitao Geng, Yanping Wang\",\"doi\":\"10.1080/08905436.2022.2051539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, Lactiplantibacillus plantarum BC299, Lactobacillus delbrueckii subsp. bulgaricus 717 and Streptococcus thermophilus 176 were used as combined starter cultures to produce a fermented soy whey beverage. The results showed that the fermentation of the combined starter cultures increased the content of lactic acid, acetic acid, succinic acid, and malic acid, while decreased the content of citric acid, fumaric acid and propionic acid. Meanwhile, the fermentation also effectively changed the proportion of volatile flavor substances. The higher sensory score of the fermented soy whey also confirmed the flavor improvement effect of the combined starter cultures. In addition, the in vivo results of animal experiments showed that the fermented soy whey could significantly improve the disease activity index (DAI) and colon morphology in dextran sulfate sodium (DSS) induced colitis mice. This study showed that the combined lactic acid bacteria starter cultures had important value-added relevance on the effective reuse of the soy whey by-product.\",\"PeriodicalId\":12347,\"journal\":{\"name\":\"Food Biotechnology\",\"volume\":\"36 1\",\"pages\":\"113 - 132\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/08905436.2022.2051539\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2022.2051539","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The fermented soy whey produced by a combined lactic acid bacteria starter shows improved flavor and the function in alleviating dextran sulphate sodium induced colitis in mice
ABSTRACT In this study, Lactiplantibacillus plantarum BC299, Lactobacillus delbrueckii subsp. bulgaricus 717 and Streptococcus thermophilus 176 were used as combined starter cultures to produce a fermented soy whey beverage. The results showed that the fermentation of the combined starter cultures increased the content of lactic acid, acetic acid, succinic acid, and malic acid, while decreased the content of citric acid, fumaric acid and propionic acid. Meanwhile, the fermentation also effectively changed the proportion of volatile flavor substances. The higher sensory score of the fermented soy whey also confirmed the flavor improvement effect of the combined starter cultures. In addition, the in vivo results of animal experiments showed that the fermented soy whey could significantly improve the disease activity index (DAI) and colon morphology in dextran sulfate sodium (DSS) induced colitis mice. This study showed that the combined lactic acid bacteria starter cultures had important value-added relevance on the effective reuse of the soy whey by-product.
期刊介绍:
Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production.
Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published.
Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.