科里奥利离心对流准涡旋区的类龙卷风涡旋

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2021-03-01 DOI:10.1080/14685248.2021.1898624
S. Horn, J. Aurnou
{"title":"科里奥利离心对流准涡旋区的类龙卷风涡旋","authors":"S. Horn, J. Aurnou","doi":"10.1080/14685248.2021.1898624","DOIUrl":null,"url":null,"abstract":"Coriolis-centrifugal convection ( ) in a cylindrical domain constitutes an idealised model of tornadic storms, where the rotating cylinder represents the mesocyclone of a supercell thunderstorm. We present a suite of direct numerical simulations, analysing the influence of centrifugal buoyancy on the formation of tornado-like vortices (TLVs). TLVs are self-consistently generated provided the flow is within the quasi-cyclostrophic (QC) regime in which the dominant dynamical balance is between pressure gradient and centrifugal buoyancy forces. This requires the Froude number to be greater than the radius-to-height aspect ratio, . We show that the TLVs that develop in our simulations share many similar features with realistic tornadoes, such as azimuthal velocity profiles, intensification of the vortex strength, and helicity characteristics. Further, we analyse the influence of the mechanical bottom boundary conditions on the formation of TLVs, finding that a rotating fluid column above a stationary surface does not generate TLVs if centrifugal buoyancy is absent. In contrast, TLVs are generated in the QC regime with any bottom boundary conditions when centrifugal buoyancy is present. Our simulations bring forth insights into natural supercell thunderstorm systems by identifying properties that determine whether a mesocyclone becomes tornadic or remains non-tornadic. For tornadoes to exist, a vertical temperature difference must be present that is capable of driving strong convection. Additionally, our predictions dimensionally imply a critical mesocyclone angular rotation rate of . Taking a typical mesocyclone height of , this translates to for centrifugal buoyancy-dominated, quasi-cyclostrophic tornadogenesis. The formation of the simulated TLVs happens at all heights on the centrifugal buoyancy time scale . This implies a roughly 1 minute, height-invariant formation for natural tornadoes, consistent with recent observational estimates.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14685248.2021.1898624","citationCount":"10","resultStr":"{\"title\":\"Tornado-like vortices in the quasi-cyclostrophic regime of Coriolis-centrifugal convection\",\"authors\":\"S. Horn, J. Aurnou\",\"doi\":\"10.1080/14685248.2021.1898624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coriolis-centrifugal convection ( ) in a cylindrical domain constitutes an idealised model of tornadic storms, where the rotating cylinder represents the mesocyclone of a supercell thunderstorm. We present a suite of direct numerical simulations, analysing the influence of centrifugal buoyancy on the formation of tornado-like vortices (TLVs). TLVs are self-consistently generated provided the flow is within the quasi-cyclostrophic (QC) regime in which the dominant dynamical balance is between pressure gradient and centrifugal buoyancy forces. This requires the Froude number to be greater than the radius-to-height aspect ratio, . We show that the TLVs that develop in our simulations share many similar features with realistic tornadoes, such as azimuthal velocity profiles, intensification of the vortex strength, and helicity characteristics. Further, we analyse the influence of the mechanical bottom boundary conditions on the formation of TLVs, finding that a rotating fluid column above a stationary surface does not generate TLVs if centrifugal buoyancy is absent. In contrast, TLVs are generated in the QC regime with any bottom boundary conditions when centrifugal buoyancy is present. Our simulations bring forth insights into natural supercell thunderstorm systems by identifying properties that determine whether a mesocyclone becomes tornadic or remains non-tornadic. For tornadoes to exist, a vertical temperature difference must be present that is capable of driving strong convection. Additionally, our predictions dimensionally imply a critical mesocyclone angular rotation rate of . Taking a typical mesocyclone height of , this translates to for centrifugal buoyancy-dominated, quasi-cyclostrophic tornadogenesis. The formation of the simulated TLVs happens at all heights on the centrifugal buoyancy time scale . This implies a roughly 1 minute, height-invariant formation for natural tornadoes, consistent with recent observational estimates.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14685248.2021.1898624\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2021.1898624\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1898624","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 10

摘要

圆柱形区域中的科里奥利离心对流()构成了龙卷风的理想化模型,其中旋转的圆柱体代表超级单体雷暴的中气旋。我们提出了一套直接的数值模拟,分析了离心浮力对龙卷风状旋涡(TLV)形成的影响。TLV是自洽产生的,前提是流量在准气旋(QC)范围内,其中主要的动力平衡是在压力梯度和离心浮力之间。这需要弗劳德数大于半径与高度的纵横比。我们表明,在我们的模拟中开发的TLV与现实龙卷风有许多相似的特征,如方位角速度剖面、涡流强度的增强和螺旋度特征。此外,我们分析了机械底部边界条件对TLV形成的影响,发现如果没有离心浮力,静止表面上方的旋转液柱不会产生TLV。相反,当存在离心浮力时,TLV是在具有任何底部边界条件的QC状态下产生的。我们的模拟通过识别决定中气旋是成为龙卷风还是保持非龙卷风的特性,为自然超级单体雷暴系统提供了见解。龙卷风要想存在,就必须存在能够驱动强对流的垂直温差。此外,我们的预测在维度上暗示了临界中气旋角旋转速率为。以典型的中气旋高度为,这意味着离心浮力主导的准气旋龙卷风生成。模拟TLV的形成发生在离心浮力时间尺度上的所有高度。这意味着自然龙卷风的形成时间大约为1分钟,高度不变,与最近的观测估计一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tornado-like vortices in the quasi-cyclostrophic regime of Coriolis-centrifugal convection
Coriolis-centrifugal convection ( ) in a cylindrical domain constitutes an idealised model of tornadic storms, where the rotating cylinder represents the mesocyclone of a supercell thunderstorm. We present a suite of direct numerical simulations, analysing the influence of centrifugal buoyancy on the formation of tornado-like vortices (TLVs). TLVs are self-consistently generated provided the flow is within the quasi-cyclostrophic (QC) regime in which the dominant dynamical balance is between pressure gradient and centrifugal buoyancy forces. This requires the Froude number to be greater than the radius-to-height aspect ratio, . We show that the TLVs that develop in our simulations share many similar features with realistic tornadoes, such as azimuthal velocity profiles, intensification of the vortex strength, and helicity characteristics. Further, we analyse the influence of the mechanical bottom boundary conditions on the formation of TLVs, finding that a rotating fluid column above a stationary surface does not generate TLVs if centrifugal buoyancy is absent. In contrast, TLVs are generated in the QC regime with any bottom boundary conditions when centrifugal buoyancy is present. Our simulations bring forth insights into natural supercell thunderstorm systems by identifying properties that determine whether a mesocyclone becomes tornadic or remains non-tornadic. For tornadoes to exist, a vertical temperature difference must be present that is capable of driving strong convection. Additionally, our predictions dimensionally imply a critical mesocyclone angular rotation rate of . Taking a typical mesocyclone height of , this translates to for centrifugal buoyancy-dominated, quasi-cyclostrophic tornadogenesis. The formation of the simulated TLVs happens at all heights on the centrifugal buoyancy time scale . This implies a roughly 1 minute, height-invariant formation for natural tornadoes, consistent with recent observational estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1