LPG空气火焰逆扩散脉动的数值与实验研究

M. Magdy, M. Kamal, A. Hamed, A. E. Hussin, W. Aboelsoud
{"title":"LPG空气火焰逆扩散脉动的数值与实验研究","authors":"M. Magdy, M. Kamal, A. Hamed, A. E. Hussin, W. Aboelsoud","doi":"10.13052/ejcm2642-2085.30232","DOIUrl":null,"url":null,"abstract":"This study uses Ansys 16 commercial package to investigate an accurate numerical model that can trace the flame shape from inverse diffusion combustion of LPG with a focus on the effect of air pulsation on the combustion characteristics. The simulation is based on solving the energy, mass and momentum equations. The large eddy simulation turbulence model and the non-premixed combustion model are used to simulate the pulsating combustion reaction flows in a cylindrical chamber with an air frequency of 10,20,50,100 and 200 rad/sec. The numerical results are in great agreement with the experimental results in the flame shape and the temperature distribution along the combustion chamber in both pulsating and non-pulsating combustion. Diffusion combustion responds positively to pulsating combustion and increases mixing in the reaction zone. Increasing the air frequency increases the temperature fluctuations, the peak turbulent kinetic energy and maximum velocity magnitude, respectively, by 27.3%, 300%, and 200%. Increasing the Strouhal number to 0.23 shortens the flame by 40% and reduces nitric oxide and carbon monoxide by 12% and 40%, respectively, including an environmentally friendly combustion product. The maximum average temperature dropped from 1800 K to 1582 K with a very homogeneous temperature distribution along the combustion chamber which is very important for furnaces.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical and Experimental Study of Inverse Diffusion LPG-Air Flames Pulsation\",\"authors\":\"M. Magdy, M. Kamal, A. Hamed, A. E. Hussin, W. Aboelsoud\",\"doi\":\"10.13052/ejcm2642-2085.30232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses Ansys 16 commercial package to investigate an accurate numerical model that can trace the flame shape from inverse diffusion combustion of LPG with a focus on the effect of air pulsation on the combustion characteristics. The simulation is based on solving the energy, mass and momentum equations. The large eddy simulation turbulence model and the non-premixed combustion model are used to simulate the pulsating combustion reaction flows in a cylindrical chamber with an air frequency of 10,20,50,100 and 200 rad/sec. The numerical results are in great agreement with the experimental results in the flame shape and the temperature distribution along the combustion chamber in both pulsating and non-pulsating combustion. Diffusion combustion responds positively to pulsating combustion and increases mixing in the reaction zone. Increasing the air frequency increases the temperature fluctuations, the peak turbulent kinetic energy and maximum velocity magnitude, respectively, by 27.3%, 300%, and 200%. Increasing the Strouhal number to 0.23 shortens the flame by 40% and reduces nitric oxide and carbon monoxide by 12% and 40%, respectively, including an environmentally friendly combustion product. The maximum average temperature dropped from 1800 K to 1582 K with a very homogeneous temperature distribution along the combustion chamber which is very important for furnaces.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.30232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.30232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本研究使用Ansys 16商业软件包研究了一个精确的数值模型,该模型可以跟踪液化石油气逆扩散燃烧的火焰形状,重点关注空气脉动对燃烧特性的影响。模拟是基于求解能量、质量和动量方程。采用大涡模拟湍流模型和非预混燃烧模型模拟了空气频率为10,20,5100和200rad/sec的圆柱形燃烧室内的脉动燃烧反应流。在脉动和非脉动燃烧中,火焰形状和燃烧室温度分布的数值结果与实验结果非常一致。扩散燃烧对脉动燃烧作出积极响应,并增加反应区中的混合。增加空气频率会使温度波动、峰值湍流动能和最大速度幅度分别增加27.3%、300%和200%。将斯特劳哈尔数增加到0.23,火焰缩短40%,一氧化氮和一氧化碳分别减少12%和40%,包括一种环保的燃烧产物。最高平均温度从1800K下降到1582K,沿燃烧室的温度分布非常均匀,这对熔炉来说非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and Experimental Study of Inverse Diffusion LPG-Air Flames Pulsation
This study uses Ansys 16 commercial package to investigate an accurate numerical model that can trace the flame shape from inverse diffusion combustion of LPG with a focus on the effect of air pulsation on the combustion characteristics. The simulation is based on solving the energy, mass and momentum equations. The large eddy simulation turbulence model and the non-premixed combustion model are used to simulate the pulsating combustion reaction flows in a cylindrical chamber with an air frequency of 10,20,50,100 and 200 rad/sec. The numerical results are in great agreement with the experimental results in the flame shape and the temperature distribution along the combustion chamber in both pulsating and non-pulsating combustion. Diffusion combustion responds positively to pulsating combustion and increases mixing in the reaction zone. Increasing the air frequency increases the temperature fluctuations, the peak turbulent kinetic energy and maximum velocity magnitude, respectively, by 27.3%, 300%, and 200%. Increasing the Strouhal number to 0.23 shortens the flame by 40% and reduces nitric oxide and carbon monoxide by 12% and 40%, respectively, including an environmentally friendly combustion product. The maximum average temperature dropped from 1800 K to 1582 K with a very homogeneous temperature distribution along the combustion chamber which is very important for furnaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
期刊最新文献
Evaluation of Piezoelectric-based Composite for Actuator Application via FEM with Thermal Analogy Vortex and Core Detection using Computer Vision and Machine Learning Methods The Impact of Flexural/Torsional Coupling on the Stability of Symmetrical Laminated Plates Static Mechanics and Dynamic Analysis and Control of Bridge Structures Under Multi-Load Coupling Effects Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1