{"title":"双Q小波稀疏分解在风电行星齿轮箱故障特征提取中的应用","authors":"Jin Xu, Xiucai Ding, Zhu Zhang, Lang Chen","doi":"10.24423/ENGTRANS.1326.20211004","DOIUrl":null,"url":null,"abstract":"The wind turbine gearbox is a critical equipment transforming the speed of the rotor hub to the generator, the condition of which is the reflection of operational efficiency and reliability of wind turbines. As the initial stage of the wind turbine gearbox, the fault feature extraction of the planetary gear set is challenging since it is prone to be affected by complicated structure, vibration from other high-speed stages and background noise. In this paper, a double Q factor wavelet-based sparse decomposition is applied to the fault feature extraction of the wind turbine planetary gearbox. Considering the sparsest wavelet coefficients, the vibration signal is iteratively decomposed into high Q and low Q components. The fault feature is generally hidden in the low Q component. With further demodulation, the fault information of planetary gears can be easily detected.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Double Q Wavelet-based Sparse Decomposition to Fault Feature Extraction of Wind Turbine Planetary Gearbox\",\"authors\":\"Jin Xu, Xiucai Ding, Zhu Zhang, Lang Chen\",\"doi\":\"10.24423/ENGTRANS.1326.20211004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wind turbine gearbox is a critical equipment transforming the speed of the rotor hub to the generator, the condition of which is the reflection of operational efficiency and reliability of wind turbines. As the initial stage of the wind turbine gearbox, the fault feature extraction of the planetary gear set is challenging since it is prone to be affected by complicated structure, vibration from other high-speed stages and background noise. In this paper, a double Q factor wavelet-based sparse decomposition is applied to the fault feature extraction of the wind turbine planetary gearbox. Considering the sparsest wavelet coefficients, the vibration signal is iteratively decomposed into high Q and low Q components. The fault feature is generally hidden in the low Q component. With further demodulation, the fault information of planetary gears can be easily detected.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1326.20211004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1326.20211004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Application of Double Q Wavelet-based Sparse Decomposition to Fault Feature Extraction of Wind Turbine Planetary Gearbox
The wind turbine gearbox is a critical equipment transforming the speed of the rotor hub to the generator, the condition of which is the reflection of operational efficiency and reliability of wind turbines. As the initial stage of the wind turbine gearbox, the fault feature extraction of the planetary gear set is challenging since it is prone to be affected by complicated structure, vibration from other high-speed stages and background noise. In this paper, a double Q factor wavelet-based sparse decomposition is applied to the fault feature extraction of the wind turbine planetary gearbox. Considering the sparsest wavelet coefficients, the vibration signal is iteratively decomposed into high Q and low Q components. The fault feature is generally hidden in the low Q component. With further demodulation, the fault information of planetary gears can be easily detected.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.