潜在类回归模型广义估计方程中模型选择准则的改进

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2019-07-31 DOI:10.11113/MATEMATIKA.V35.N2.1175
J. Purnomo, Chih-Rung Chen, Guangping Huang
{"title":"潜在类回归模型广义估计方程中模型选择准则的改进","authors":"J. Purnomo, Chih-Rung Chen, Guangping Huang","doi":"10.11113/MATEMATIKA.V35.N2.1175","DOIUrl":null,"url":null,"abstract":"In recent years, generalised estimating equations (GEEs) have played an important role in many fields of research, such as biomedicine. In this paper, we use GEEs for latent class regression (LCR) with covariate effects on underlying and measured variables. However, there are only a few model-selection criteria in GEEs. The widely known Akaike information criterion (AIC) cannot be used directly, since AIC is a full likelihood-based model, whereas GEEs are nonlikelihood based. Hence, we propose a modification to AIC in GEEs for (LCR) models, where the likelihood is replaced by quasi-likelihood, and a proper adjustment is made by giving a penalty term. The data of the modified hospital elder life program (mHELP) project are used to illustrate our method.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Model-Selection Criteria in a Generalised Estimating Equation for Latent Class Regression Models\",\"authors\":\"J. Purnomo, Chih-Rung Chen, Guangping Huang\",\"doi\":\"10.11113/MATEMATIKA.V35.N2.1175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, generalised estimating equations (GEEs) have played an important role in many fields of research, such as biomedicine. In this paper, we use GEEs for latent class regression (LCR) with covariate effects on underlying and measured variables. However, there are only a few model-selection criteria in GEEs. The widely known Akaike information criterion (AIC) cannot be used directly, since AIC is a full likelihood-based model, whereas GEEs are nonlikelihood based. Hence, we propose a modification to AIC in GEEs for (LCR) models, where the likelihood is replaced by quasi-likelihood, and a proper adjustment is made by giving a penalty term. The data of the modified hospital elder life program (mHELP) project are used to illustrate our method.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V35.N2.1175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,广义估计方程在生物医学等许多研究领域发挥了重要作用。在本文中,我们将GEE用于潜在类回归(LCR),该回归对潜在变量和测量变量具有协变量效应。然而,GEE中只有少数几个车型选择标准。众所周知的Akaike信息准则(AIC)不能直接使用,因为AIC是一个基于全似然的模型,而GEE是基于非似然的。因此,我们建议对(LCR)模型的GEEs中的AIC进行修改,用拟似然代替似然,并通过给出惩罚项进行适当调整。利用改进的医院老年生活计划(mHELP)项目的数据来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modified Model-Selection Criteria in a Generalised Estimating Equation for Latent Class Regression Models
In recent years, generalised estimating equations (GEEs) have played an important role in many fields of research, such as biomedicine. In this paper, we use GEEs for latent class regression (LCR) with covariate effects on underlying and measured variables. However, there are only a few model-selection criteria in GEEs. The widely known Akaike information criterion (AIC) cannot be used directly, since AIC is a full likelihood-based model, whereas GEEs are nonlikelihood based. Hence, we propose a modification to AIC in GEEs for (LCR) models, where the likelihood is replaced by quasi-likelihood, and a proper adjustment is made by giving a penalty term. The data of the modified hospital elder life program (mHELP) project are used to illustrate our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1