J. Tyson, A. Csikász-Nagy, D. Gonze, Jae Kyoung Kim, Silvia Santos, J. Wolf
{"title":"活细胞中的计时和决策:第1部分","authors":"J. Tyson, A. Csikász-Nagy, D. Gonze, Jae Kyoung Kim, Silvia Santos, J. Wolf","doi":"10.1098/rsfs.2022.0011","DOIUrl":null,"url":null,"abstract":"To survive and reproduce, a cell must process information from its environment and its own internal state and respond accordingly, in terms of metabolic activity, gene expression, movement, growth, division and differentiation. These signal–response decisions are made by complex networks of interacting genes and proteins, which function as biochemical switches and clocks, and other recognizable information-processing circuitry. This theme issue of Interface Focus (in two parts) brings together articles on time-keeping and decision-making in living cells—work that uses precise mathematical modelling of underlying molecular regulatory networks to understand important features of cell physiology. Part I focuses on time-keeping: mechanisms and dynamics of biological oscillators and modes of synchronization and entrainment of oscillators, with special attention to circadian clocks.","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Time-keeping and decision-making in living cells: Part I\",\"authors\":\"J. Tyson, A. Csikász-Nagy, D. Gonze, Jae Kyoung Kim, Silvia Santos, J. Wolf\",\"doi\":\"10.1098/rsfs.2022.0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To survive and reproduce, a cell must process information from its environment and its own internal state and respond accordingly, in terms of metabolic activity, gene expression, movement, growth, division and differentiation. These signal–response decisions are made by complex networks of interacting genes and proteins, which function as biochemical switches and clocks, and other recognizable information-processing circuitry. This theme issue of Interface Focus (in two parts) brings together articles on time-keeping and decision-making in living cells—work that uses precise mathematical modelling of underlying molecular regulatory networks to understand important features of cell physiology. Part I focuses on time-keeping: mechanisms and dynamics of biological oscillators and modes of synchronization and entrainment of oscillators, with special attention to circadian clocks.\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2022.0011\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2022.0011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Time-keeping and decision-making in living cells: Part I
To survive and reproduce, a cell must process information from its environment and its own internal state and respond accordingly, in terms of metabolic activity, gene expression, movement, growth, division and differentiation. These signal–response decisions are made by complex networks of interacting genes and proteins, which function as biochemical switches and clocks, and other recognizable information-processing circuitry. This theme issue of Interface Focus (in two parts) brings together articles on time-keeping and decision-making in living cells—work that uses precise mathematical modelling of underlying molecular regulatory networks to understand important features of cell physiology. Part I focuses on time-keeping: mechanisms and dynamics of biological oscillators and modes of synchronization and entrainment of oscillators, with special attention to circadian clocks.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.