用第一性原理模拟预测Mo x Ti1−x S2单层的结构和电子性质

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanomaterials and Nanotechnology Pub Date : 2020-10-20 DOI:10.1177/1847980420955093
A. Verma, Federico Raffone, G. Cicero
{"title":"用第一性原理模拟预测Mo x Ti1−x S2单层的结构和电子性质","authors":"A. Verma, Federico Raffone, G. Cicero","doi":"10.1177/1847980420955093","DOIUrl":null,"url":null,"abstract":"Two-dimensional transition metal dichalcogenides have gained great attention because of their peculiar physical properties that make them interesting for a wide range of applications. Lately, alloying between different transition metal dichalcogenides has been proposed as an approach to control two-dimensional phase stability and to obtain compounds with tailored characteristics. In this theoretical study, we predict the phase diagram and the electronic properties of Mo x Ti1−x S2 at varying stoichiometry and show how the material is metallic, when titanium is the predominant species, while it behaves as a p-doped semiconductor, when approaching pure MoS2 composition. Correspondingly, the thermodynamically most stable phase switches from the tetragonal to the hexagonal one. Further, we present an example which shows how the proposed alloys can be used to obtain new vertical two-dimensional heterostructures achieving effective electron/hole separation.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980420955093","citationCount":"4","resultStr":"{\"title\":\"Prediction of the structural and electronic properties of Mo x Ti1−x S2 monolayers via first principle simulations\",\"authors\":\"A. Verma, Federico Raffone, G. Cicero\",\"doi\":\"10.1177/1847980420955093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional transition metal dichalcogenides have gained great attention because of their peculiar physical properties that make them interesting for a wide range of applications. Lately, alloying between different transition metal dichalcogenides has been proposed as an approach to control two-dimensional phase stability and to obtain compounds with tailored characteristics. In this theoretical study, we predict the phase diagram and the electronic properties of Mo x Ti1−x S2 at varying stoichiometry and show how the material is metallic, when titanium is the predominant species, while it behaves as a p-doped semiconductor, when approaching pure MoS2 composition. Correspondingly, the thermodynamically most stable phase switches from the tetragonal to the hexagonal one. Further, we present an example which shows how the proposed alloys can be used to obtain new vertical two-dimensional heterostructures achieving effective electron/hole separation.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1847980420955093\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1847980420955093\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1847980420955093","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

二维过渡金属二硫族化合物因其独特的物理性质而受到广泛关注。最近,不同过渡金属二硫族化合物之间的合金化被提出作为控制二维相稳定性和获得具有定制特性的化合物的一种方法。在这项理论研究中,我们预测了Mo x Ti1−x S2在不同化学计量下的相图和电子性质,并展示了当钛是主要物种时,该材料是金属的,而当接近纯MoS2成分时,它表现为p掺杂半导体。相应地,热力学上最稳定的相从四方相转变为六边形相。此外,我们还举了一个例子,展示了如何使用所提出的合金来获得新的垂直二维异质结构,从而实现有效的电子/空穴分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of the structural and electronic properties of Mo x Ti1−x S2 monolayers via first principle simulations
Two-dimensional transition metal dichalcogenides have gained great attention because of their peculiar physical properties that make them interesting for a wide range of applications. Lately, alloying between different transition metal dichalcogenides has been proposed as an approach to control two-dimensional phase stability and to obtain compounds with tailored characteristics. In this theoretical study, we predict the phase diagram and the electronic properties of Mo x Ti1−x S2 at varying stoichiometry and show how the material is metallic, when titanium is the predominant species, while it behaves as a p-doped semiconductor, when approaching pure MoS2 composition. Correspondingly, the thermodynamically most stable phase switches from the tetragonal to the hexagonal one. Further, we present an example which shows how the proposed alloys can be used to obtain new vertical two-dimensional heterostructures achieving effective electron/hole separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
期刊最新文献
Grewia tenax-Mediated Silver Nanoparticles as Efficient Antibacterial and Antifungal Agents Material Removal Mechanism and Evolution of Subsurface Defects during Nanocutting of Monocrystalline Cu Rapid Colorimetric Detection of Hg (II) Based on Hg (II)-Induced Suppressed Enzyme-Like Reduction of 4-Nitrophenol by Au@ZnO/Fe3O4 in a Cosmetic Skin Product Nanomaterials in Nanophotonics Structure for Performing All-Optical 2 × 1 Multiplexer Based on Elliptical IMI-Plasmonic Waveguides Low Dimension Elemental and van der Waals Hetetostructures Materials including C Nanostructures and Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1