基于段的边缘设备实时DAG任务节能调度

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2023-07-01 DOI:10.1016/j.parco.2023.103022
Lei Yu , Tianqi Zhong , Peng Bi , Lan Wang , Fei Teng
{"title":"基于段的边缘设备实时DAG任务节能调度","authors":"Lei Yu ,&nbsp;Tianqi Zhong ,&nbsp;Peng Bi ,&nbsp;Lan Wang ,&nbsp;Fei Teng","doi":"10.1016/j.parco.2023.103022","DOIUrl":null,"url":null,"abstract":"<div><p><span>Smart Mobile Devices<span><span><span> (SMDs) are crucial for the edge computing paradigm’s real-world sensing. Real-time applications, which are computationally intensive and periodic with strict time constraints, can typically be used to replicate real-world sensing. Such applications call for increased processing speed, memory capacity, and battery life on SMDs, which are typically resource-constrained due to physical size restrictions. As a result, scheduling real-time applications for SMDs that are power efficient is crucial for the regular operation of edge computing platforms, and downstream decision-making tasks like </span>computation offloading require the prediction of </span>power consumption using power-saving approaches like DVFS. The main question is how to swiftly develop a better solution to the NP-Hard power efficient scheduling problem with DVFS. Thus, by segmenting the aligned tasks on an SMD, we present a segment-based analysis approach. Additionally, we offer a segment-based </span></span>scheduling algorithm (SEDF) that draws inspiration from the segment-based analysis approach to achieve power-efficient scheduling for these real-time workloads. This segment-based approach yields a power consumption bound (PB), and a computation offloading use case is developed to demonstrate the application of PB in the subsequent decision-making processes. Both simulations and actual device tests are used to confirm the PB, SEDF, and the effectiveness of offloading decision-making. We demonstrate empirically that PB can be utilized to make approximative optimal decisions in decision-making problems involving computation offloading. SEDF is a straightforward and effective scheduling approach that can cut the power consumption of a multi-core SMD by roughly 30%.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"116 ","pages":"Article 103022"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segment based power-efficient scheduling for real-time DAG tasks on edge devices\",\"authors\":\"Lei Yu ,&nbsp;Tianqi Zhong ,&nbsp;Peng Bi ,&nbsp;Lan Wang ,&nbsp;Fei Teng\",\"doi\":\"10.1016/j.parco.2023.103022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Smart Mobile Devices<span><span><span> (SMDs) are crucial for the edge computing paradigm’s real-world sensing. Real-time applications, which are computationally intensive and periodic with strict time constraints, can typically be used to replicate real-world sensing. Such applications call for increased processing speed, memory capacity, and battery life on SMDs, which are typically resource-constrained due to physical size restrictions. As a result, scheduling real-time applications for SMDs that are power efficient is crucial for the regular operation of edge computing platforms, and downstream decision-making tasks like </span>computation offloading require the prediction of </span>power consumption using power-saving approaches like DVFS. The main question is how to swiftly develop a better solution to the NP-Hard power efficient scheduling problem with DVFS. Thus, by segmenting the aligned tasks on an SMD, we present a segment-based analysis approach. Additionally, we offer a segment-based </span></span>scheduling algorithm (SEDF) that draws inspiration from the segment-based analysis approach to achieve power-efficient scheduling for these real-time workloads. This segment-based approach yields a power consumption bound (PB), and a computation offloading use case is developed to demonstrate the application of PB in the subsequent decision-making processes. Both simulations and actual device tests are used to confirm the PB, SEDF, and the effectiveness of offloading decision-making. We demonstrate empirically that PB can be utilized to make approximative optimal decisions in decision-making problems involving computation offloading. SEDF is a straightforward and effective scheduling approach that can cut the power consumption of a multi-core SMD by roughly 30%.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"116 \",\"pages\":\"Article 103022\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819123000285\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000285","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

智能移动设备(SMD)对于边缘计算范式的真实世界感知至关重要。实时应用程序是计算密集型的,具有严格的时间限制,通常可以用于复制真实世界的传感。这种应用要求提高SMD的处理速度、存储器容量和电池寿命,而SMD通常由于物理尺寸限制而受到资源限制。因此,为SMD调度节能的实时应用程序对于边缘计算平台的正常运行至关重要,而计算卸载等下游决策任务需要使用DVFS等节能方法来预测功耗。主要问题是如何利用DVFS快速开发出一个更好的NP硬功率高效调度问题的解决方案。因此,通过对SMD上的对齐任务进行分段,我们提出了一种基于分段的分析方法。此外,我们还提供了一种基于分段的调度算法(SEDF),该算法的灵感来自于基于分段的分析方法,以实现这些实时工作负载的节能调度。这种基于分段的方法产生了功耗界限(PB),并开发了一个计算卸载用例来演示PB在后续决策过程中的应用。模拟和实际设备测试都用于确认PB、SEDF和卸载决策的有效性。我们从经验上证明了PB可以用于在涉及计算卸载的决策问题中做出近似最优决策。SEDF是一种简单有效的调度方法,可以将多核SMD的功耗降低约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segment based power-efficient scheduling for real-time DAG tasks on edge devices

Smart Mobile Devices (SMDs) are crucial for the edge computing paradigm’s real-world sensing. Real-time applications, which are computationally intensive and periodic with strict time constraints, can typically be used to replicate real-world sensing. Such applications call for increased processing speed, memory capacity, and battery life on SMDs, which are typically resource-constrained due to physical size restrictions. As a result, scheduling real-time applications for SMDs that are power efficient is crucial for the regular operation of edge computing platforms, and downstream decision-making tasks like computation offloading require the prediction of power consumption using power-saving approaches like DVFS. The main question is how to swiftly develop a better solution to the NP-Hard power efficient scheduling problem with DVFS. Thus, by segmenting the aligned tasks on an SMD, we present a segment-based analysis approach. Additionally, we offer a segment-based scheduling algorithm (SEDF) that draws inspiration from the segment-based analysis approach to achieve power-efficient scheduling for these real-time workloads. This segment-based approach yields a power consumption bound (PB), and a computation offloading use case is developed to demonstrate the application of PB in the subsequent decision-making processes. Both simulations and actual device tests are used to confirm the PB, SEDF, and the effectiveness of offloading decision-making. We demonstrate empirically that PB can be utilized to make approximative optimal decisions in decision-making problems involving computation offloading. SEDF is a straightforward and effective scheduling approach that can cut the power consumption of a multi-core SMD by roughly 30%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1