{"title":"ESA:一种用于神威太湖之光生物数据库检索的高效序列比对算法","authors":"Hao Zhang , Zhiyi Huang , Yawen Chen , Jianguo Liang , Xiran Gao","doi":"10.1016/j.parco.2023.103043","DOIUrl":null,"url":null,"abstract":"<div><p>In computational biology, biological database search has been playing a very important role. Since the COVID-19 outbreak, it has provided significant help in identifying common characteristics of viruses and developing vaccines and drugs. Sequence alignment<span><span>, a method finding similarity, </span>homology<span> and other information between gene/protein sequences, is the usual tool in the database search. With the explosive growth of biological databases, the search process has become extremely time-consuming. However, existing parallel sequence alignment algorithms cannot deliver efficient database search due to low utilization of the resources such as cache memory and performance issues such as load imbalance and high communication overhead<span><span>. In this paper, we propose an efficient sequence alignment algorithm on Sunway TaihuLight, called ESA, for biological database search. ESA adopts a novel hybrid alignment algorithm combining local and global alignments, which has higher accuracy than other sequence alignment algorithms. Further, ESA has several optimizations including cache-aware sequence alignment, capacity-aware load balancing and bandwidth-aware data transfer. They are implemented in a heterogeneous processor SW26010 adopted in the world’s 6th fastest supercomputer<span><span>, Sunway TaihuLight. The implementation of ESA is evaluated with the Swiss-Prot database on Sunway TaihuLight and other platforms. Our experimental results show that ESA has a speedup of 34.5 on a single core group (with 65 cores) of Sunway TaihuLight. The strong and weak scalabilities of ESA are tested with 1 to 1024 core groups of Sunway TaihuLight. The results show that ESA has linear weak scalability and very impressive strong scalability. For strong scalability, ESA achieves a speedup of 338.04 with 1024 core groups compared with a single core group. We also show that our proposed optimizations are also applicable to GPU, Intel </span>multicore processors, and </span></span>heterogeneous computing platforms.</span></span></span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"117 ","pages":"Article 103043"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESA: An efficient sequence alignment algorithm for biological database search on Sunway TaihuLight\",\"authors\":\"Hao Zhang , Zhiyi Huang , Yawen Chen , Jianguo Liang , Xiran Gao\",\"doi\":\"10.1016/j.parco.2023.103043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In computational biology, biological database search has been playing a very important role. Since the COVID-19 outbreak, it has provided significant help in identifying common characteristics of viruses and developing vaccines and drugs. Sequence alignment<span><span>, a method finding similarity, </span>homology<span> and other information between gene/protein sequences, is the usual tool in the database search. With the explosive growth of biological databases, the search process has become extremely time-consuming. However, existing parallel sequence alignment algorithms cannot deliver efficient database search due to low utilization of the resources such as cache memory and performance issues such as load imbalance and high communication overhead<span><span>. In this paper, we propose an efficient sequence alignment algorithm on Sunway TaihuLight, called ESA, for biological database search. ESA adopts a novel hybrid alignment algorithm combining local and global alignments, which has higher accuracy than other sequence alignment algorithms. Further, ESA has several optimizations including cache-aware sequence alignment, capacity-aware load balancing and bandwidth-aware data transfer. They are implemented in a heterogeneous processor SW26010 adopted in the world’s 6th fastest supercomputer<span><span>, Sunway TaihuLight. The implementation of ESA is evaluated with the Swiss-Prot database on Sunway TaihuLight and other platforms. Our experimental results show that ESA has a speedup of 34.5 on a single core group (with 65 cores) of Sunway TaihuLight. The strong and weak scalabilities of ESA are tested with 1 to 1024 core groups of Sunway TaihuLight. The results show that ESA has linear weak scalability and very impressive strong scalability. For strong scalability, ESA achieves a speedup of 338.04 with 1024 core groups compared with a single core group. We also show that our proposed optimizations are also applicable to GPU, Intel </span>multicore processors, and </span></span>heterogeneous computing platforms.</span></span></span></p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"117 \",\"pages\":\"Article 103043\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819123000492\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000492","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
ESA: An efficient sequence alignment algorithm for biological database search on Sunway TaihuLight
In computational biology, biological database search has been playing a very important role. Since the COVID-19 outbreak, it has provided significant help in identifying common characteristics of viruses and developing vaccines and drugs. Sequence alignment, a method finding similarity, homology and other information between gene/protein sequences, is the usual tool in the database search. With the explosive growth of biological databases, the search process has become extremely time-consuming. However, existing parallel sequence alignment algorithms cannot deliver efficient database search due to low utilization of the resources such as cache memory and performance issues such as load imbalance and high communication overhead. In this paper, we propose an efficient sequence alignment algorithm on Sunway TaihuLight, called ESA, for biological database search. ESA adopts a novel hybrid alignment algorithm combining local and global alignments, which has higher accuracy than other sequence alignment algorithms. Further, ESA has several optimizations including cache-aware sequence alignment, capacity-aware load balancing and bandwidth-aware data transfer. They are implemented in a heterogeneous processor SW26010 adopted in the world’s 6th fastest supercomputer, Sunway TaihuLight. The implementation of ESA is evaluated with the Swiss-Prot database on Sunway TaihuLight and other platforms. Our experimental results show that ESA has a speedup of 34.5 on a single core group (with 65 cores) of Sunway TaihuLight. The strong and weak scalabilities of ESA are tested with 1 to 1024 core groups of Sunway TaihuLight. The results show that ESA has linear weak scalability and very impressive strong scalability. For strong scalability, ESA achieves a speedup of 338.04 with 1024 core groups compared with a single core group. We also show that our proposed optimizations are also applicable to GPU, Intel multicore processors, and heterogeneous computing platforms.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications