Yajun Xin, Ran Wang, Yongtao Sun, Qian Ding, Shuliang Cheng
{"title":"一种新型六韧带手性结构的带隙机理及设计","authors":"Yajun Xin, Ran Wang, Yongtao Sun, Qian Ding, Shuliang Cheng","doi":"10.1007/s40857-021-00249-y","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving low-frequency and wide band gaps with a simple and small structure can be a challenging task. In this paper, a new type of six-ligament chiral structure with simple geometric parameters and smaller geometric dimensions is designed. The side length of the chiral unit cell is only 20 mm. The proposed structure and the design idea it embodies may be of assistance to deal with the challenges mentioned above. A numerical simulation is performed to analyze the relationship between the geometric parameters and band gap characteristics of the structure. Based on this relationship, a geometrically optimized structure is proposed and the simulation results show it has better band gap characteristics which can achieve low-frequency and wide band gaps. Moreover, frequency response analysis is used to verify the accuracy of the simulation. Finally, the band gap mechanism is analyzed by analyzing the mode diagrams of the structure.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"50 1","pages":"41 - 48"},"PeriodicalIF":1.7000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00249-y","citationCount":"2","resultStr":"{\"title\":\"Band Gap Mechanism and Design of a New Type of Six-Ligament Chiral Structure\",\"authors\":\"Yajun Xin, Ran Wang, Yongtao Sun, Qian Ding, Shuliang Cheng\",\"doi\":\"10.1007/s40857-021-00249-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Achieving low-frequency and wide band gaps with a simple and small structure can be a challenging task. In this paper, a new type of six-ligament chiral structure with simple geometric parameters and smaller geometric dimensions is designed. The side length of the chiral unit cell is only 20 mm. The proposed structure and the design idea it embodies may be of assistance to deal with the challenges mentioned above. A numerical simulation is performed to analyze the relationship between the geometric parameters and band gap characteristics of the structure. Based on this relationship, a geometrically optimized structure is proposed and the simulation results show it has better band gap characteristics which can achieve low-frequency and wide band gaps. Moreover, frequency response analysis is used to verify the accuracy of the simulation. Finally, the band gap mechanism is analyzed by analyzing the mode diagrams of the structure.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"50 1\",\"pages\":\"41 - 48\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40857-021-00249-y\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-021-00249-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00249-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Band Gap Mechanism and Design of a New Type of Six-Ligament Chiral Structure
Achieving low-frequency and wide band gaps with a simple and small structure can be a challenging task. In this paper, a new type of six-ligament chiral structure with simple geometric parameters and smaller geometric dimensions is designed. The side length of the chiral unit cell is only 20 mm. The proposed structure and the design idea it embodies may be of assistance to deal with the challenges mentioned above. A numerical simulation is performed to analyze the relationship between the geometric parameters and band gap characteristics of the structure. Based on this relationship, a geometrically optimized structure is proposed and the simulation results show it has better band gap characteristics which can achieve low-frequency and wide band gaps. Moreover, frequency response analysis is used to verify the accuracy of the simulation. Finally, the band gap mechanism is analyzed by analyzing the mode diagrams of the structure.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.