Mi Li, Xiaofeng Lu, Xiaodong Wang, Shengfu Lu, Ning Zhong
{"title":"基于信息熵粒子群优化的混合核支持向量机生物医学分类应用及参数优化","authors":"Mi Li, Xiaofeng Lu, Xiaodong Wang, Shengfu Lu, Ning Zhong","doi":"10.1080/24699322.2016.1240300","DOIUrl":null,"url":null,"abstract":"Abstract The types of kernel function and relevant parameters’ selection in support vector machine (SVM) have a major impact on the performance of the classifier. In order to improve the accuracy and generalization ability of the model, we used mixed kernel function SVM classification algorithm based on the information entropy particle swarm optimization (PSO): on the one hand, the generalization ability of classifier is effectively enhanced by constructing a mixed kernel function with global kernel function and local kernel function; on the other hand, the accuracy of classification is improved through optimization for related kernel parameters based on information entropy PSO. Compared with PSO-RBF kernel and PSO-mixed kernel, the improved PSO-mixed kernel SVM can effectively improve the classification accuracy through the classification experiment on biomedical datasets, which would not only prove the efficiency of this algorithm, but also show that the algorithm has good practical application value in biomedicine prediction.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"7 1","pages":"132 - 141"},"PeriodicalIF":1.5000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2016.1240300","citationCount":"12","resultStr":"{\"title\":\"Biomedical classification application and parameters optimization of mixed kernel SVM based on the information entropy particle swarm optimization\",\"authors\":\"Mi Li, Xiaofeng Lu, Xiaodong Wang, Shengfu Lu, Ning Zhong\",\"doi\":\"10.1080/24699322.2016.1240300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The types of kernel function and relevant parameters’ selection in support vector machine (SVM) have a major impact on the performance of the classifier. In order to improve the accuracy and generalization ability of the model, we used mixed kernel function SVM classification algorithm based on the information entropy particle swarm optimization (PSO): on the one hand, the generalization ability of classifier is effectively enhanced by constructing a mixed kernel function with global kernel function and local kernel function; on the other hand, the accuracy of classification is improved through optimization for related kernel parameters based on information entropy PSO. Compared with PSO-RBF kernel and PSO-mixed kernel, the improved PSO-mixed kernel SVM can effectively improve the classification accuracy through the classification experiment on biomedical datasets, which would not only prove the efficiency of this algorithm, but also show that the algorithm has good practical application value in biomedicine prediction.\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":\"7 1\",\"pages\":\"132 - 141\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2016-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24699322.2016.1240300\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2016.1240300\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2016.1240300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Biomedical classification application and parameters optimization of mixed kernel SVM based on the information entropy particle swarm optimization
Abstract The types of kernel function and relevant parameters’ selection in support vector machine (SVM) have a major impact on the performance of the classifier. In order to improve the accuracy and generalization ability of the model, we used mixed kernel function SVM classification algorithm based on the information entropy particle swarm optimization (PSO): on the one hand, the generalization ability of classifier is effectively enhanced by constructing a mixed kernel function with global kernel function and local kernel function; on the other hand, the accuracy of classification is improved through optimization for related kernel parameters based on information entropy PSO. Compared with PSO-RBF kernel and PSO-mixed kernel, the improved PSO-mixed kernel SVM can effectively improve the classification accuracy through the classification experiment on biomedical datasets, which would not only prove the efficiency of this algorithm, but also show that the algorithm has good practical application value in biomedicine prediction.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.