{"title":"服役阶段负弯矩作用下钢-混凝土组合梁有效宽度","authors":"Li Zhu, Qing-bo Ma, Wutong Yan, Bing Han, Wei Liu","doi":"10.12989/SCS.2021.38.4.415","DOIUrl":null,"url":null,"abstract":"The effective flange width was usually introduced into elementary beam theory to consider the shear lag effect in steel-concrete composite beams. Previous studies have primarily focused on the effective width under positive moments and elastic loading, whereas it is still not clear for negative moment cases in the normal service stages. To account for this problem, this paper proposed simplified formulas for the effective flange width and reinforcement stress of composite beams under negative moments in service stages. First, a 10-degree-of-freedom (DOF) fiber beam element considering the shear lag effect and interfacial slip effect was proposed, and a computational procedure was developed in the OpenSees software. The accuracy and applicability of the proposed model were verified through comparisons with experimental results. Second, a method was proposed for determining the effective width of composite beams under negative moments based on reinforcement stress. Employing the proposed model, the simplified formulas were proposed via numerical fitting for cases under uniform loading and centralized loading at the mid-span. Finally, based on the proposed formulas, a simplified calculation method for the reinforcement stress in service stages was established. Comparisons were made between the proposed formulas and design code. The results showed that the design code method greatly underestimated the contribution of concrete under negative moments, leading to notable overestimations in the reinforcement stress and crack width.","PeriodicalId":51177,"journal":{"name":"Steel and Composite Structures","volume":"38 1","pages":"415-430"},"PeriodicalIF":4.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective width of steel-concrete composite beams under negative moments in service stages\",\"authors\":\"Li Zhu, Qing-bo Ma, Wutong Yan, Bing Han, Wei Liu\",\"doi\":\"10.12989/SCS.2021.38.4.415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective flange width was usually introduced into elementary beam theory to consider the shear lag effect in steel-concrete composite beams. Previous studies have primarily focused on the effective width under positive moments and elastic loading, whereas it is still not clear for negative moment cases in the normal service stages. To account for this problem, this paper proposed simplified formulas for the effective flange width and reinforcement stress of composite beams under negative moments in service stages. First, a 10-degree-of-freedom (DOF) fiber beam element considering the shear lag effect and interfacial slip effect was proposed, and a computational procedure was developed in the OpenSees software. The accuracy and applicability of the proposed model were verified through comparisons with experimental results. Second, a method was proposed for determining the effective width of composite beams under negative moments based on reinforcement stress. Employing the proposed model, the simplified formulas were proposed via numerical fitting for cases under uniform loading and centralized loading at the mid-span. Finally, based on the proposed formulas, a simplified calculation method for the reinforcement stress in service stages was established. Comparisons were made between the proposed formulas and design code. The results showed that the design code method greatly underestimated the contribution of concrete under negative moments, leading to notable overestimations in the reinforcement stress and crack width.\",\"PeriodicalId\":51177,\"journal\":{\"name\":\"Steel and Composite Structures\",\"volume\":\"38 1\",\"pages\":\"415-430\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel and Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SCS.2021.38.4.415\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel and Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SCS.2021.38.4.415","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effective width of steel-concrete composite beams under negative moments in service stages
The effective flange width was usually introduced into elementary beam theory to consider the shear lag effect in steel-concrete composite beams. Previous studies have primarily focused on the effective width under positive moments and elastic loading, whereas it is still not clear for negative moment cases in the normal service stages. To account for this problem, this paper proposed simplified formulas for the effective flange width and reinforcement stress of composite beams under negative moments in service stages. First, a 10-degree-of-freedom (DOF) fiber beam element considering the shear lag effect and interfacial slip effect was proposed, and a computational procedure was developed in the OpenSees software. The accuracy and applicability of the proposed model were verified through comparisons with experimental results. Second, a method was proposed for determining the effective width of composite beams under negative moments based on reinforcement stress. Employing the proposed model, the simplified formulas were proposed via numerical fitting for cases under uniform loading and centralized loading at the mid-span. Finally, based on the proposed formulas, a simplified calculation method for the reinforcement stress in service stages was established. Comparisons were made between the proposed formulas and design code. The results showed that the design code method greatly underestimated the contribution of concrete under negative moments, leading to notable overestimations in the reinforcement stress and crack width.
期刊介绍:
Steel & Composite Structures, An International Journal, provides and excellent publication channel which reports the up-to-date research developments in the steel structures and steel-concrete composite structures, and FRP plated structures from the international steel community. The research results reported in this journal address all the aspects of theoretical and experimental research, including Buckling/Stability, Fatigue/Fracture, Fire Performance, Connections, Frames/Bridges, Plates/Shells, Composite Structural Components, Hybrid Structures, Fabrication/Maintenance, Design Codes, Dynamics/Vibrations, Nonferrous Metal Structures, Non-metalic plates, Analytical Methods.
The Journal specially wishes to bridge the gap between the theoretical developments and practical applications for the benefits of both academic researchers and practicing engineers. In this light, contributions from the practicing engineers are especially welcome.