{"title":"化学工艺开发中降低风险的腐蚀试验","authors":"Jarle Holt, K. Atkins, S. Shapcott","doi":"10.1595/205651323x16558250232509","DOIUrl":null,"url":null,"abstract":"This work explores some of the key factors to consider in design and implementation of corrosion testing at a laboratory scale for the development of new chemical technologies in order that process technology scale up risks, not least those of safety can be minimised. This is to ensure safe and reliable introduction of new process technologies, while also pursuing the minimum capital cost of often expensive plant MoC. Laboratory-based corrosion testing should never be used exclusively to replace inspection and monitoring of corrosion in operating process plants, as real-world conditions are rarely possible to be wholly replicated in the laboratory. However, testing as initial screening, or to provide deeper mechanistic insights is often an essential part of the development and design of first-of-a-kind process technologies. Several methodologies to assess corrosion under highly aggressive conditions have been developed and applied in the development of new chemical processes and is demonstrated in two case studies outlined in this article. This work focuses on testing of materials in contact with corrosive liquids or vapours.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion Testing for Risk Reduction in Chemical Process Development\",\"authors\":\"Jarle Holt, K. Atkins, S. Shapcott\",\"doi\":\"10.1595/205651323x16558250232509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores some of the key factors to consider in design and implementation of corrosion testing at a laboratory scale for the development of new chemical technologies in order that process technology scale up risks, not least those of safety can be minimised. This is to ensure safe and reliable introduction of new process technologies, while also pursuing the minimum capital cost of often expensive plant MoC. Laboratory-based corrosion testing should never be used exclusively to replace inspection and monitoring of corrosion in operating process plants, as real-world conditions are rarely possible to be wholly replicated in the laboratory. However, testing as initial screening, or to provide deeper mechanistic insights is often an essential part of the development and design of first-of-a-kind process technologies. Several methodologies to assess corrosion under highly aggressive conditions have been developed and applied in the development of new chemical processes and is demonstrated in two case studies outlined in this article. This work focuses on testing of materials in contact with corrosive liquids or vapours.\",\"PeriodicalId\":14807,\"journal\":{\"name\":\"Johnson Matthey Technology Review\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Johnson Matthey Technology Review\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1595/205651323x16558250232509\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1595/205651323x16558250232509","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Corrosion Testing for Risk Reduction in Chemical Process Development
This work explores some of the key factors to consider in design and implementation of corrosion testing at a laboratory scale for the development of new chemical technologies in order that process technology scale up risks, not least those of safety can be minimised. This is to ensure safe and reliable introduction of new process technologies, while also pursuing the minimum capital cost of often expensive plant MoC. Laboratory-based corrosion testing should never be used exclusively to replace inspection and monitoring of corrosion in operating process plants, as real-world conditions are rarely possible to be wholly replicated in the laboratory. However, testing as initial screening, or to provide deeper mechanistic insights is often an essential part of the development and design of first-of-a-kind process technologies. Several methodologies to assess corrosion under highly aggressive conditions have been developed and applied in the development of new chemical processes and is demonstrated in two case studies outlined in this article. This work focuses on testing of materials in contact with corrosive liquids or vapours.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.