{"title":"隧道视觉综合症:严重拖延进展","authors":"R. Hartenstein","doi":"10.1109/ASAP.2013.6567541","DOIUrl":null,"url":null,"abstract":"Summary form only given. Not only the multicore dilemma massively reduces programmer productivity and the progress of energy-efficient performance — a critical issue for the long term overall affordability of computing. Because of the Tunnel Vision Syndrome the solutions coming from a few isolated areas, are by far too slow and massively imperfect. Systolic arrays (SA) have been introduced by a mathematician. His synthesis method was “of course” algebraic, supporting only a few applications and sequencing concepts were “not his job”. A decade later we transformed this SA draft into a general purpose machine paradigm which was presented at the 3rd and 8th through 11th ASAP. The acceptance of our other fundamental idea, Term Rewriting System (TRS) top-down use for microchip design EDA, was delayed by the TRS expert scene: by 30 years! The R&D landscape requires radically new solutions. We must avoid the reductionist philosophies of most specialized research areas and introduce connected thinking to bridge the gaps between different paradigms and between several abstraction levels. We must urgently rethink all basic assumptions and far-reaching cooperation patterns.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"456 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The tunnel vision syndrome: Massively delaying progress\",\"authors\":\"R. Hartenstein\",\"doi\":\"10.1109/ASAP.2013.6567541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. Not only the multicore dilemma massively reduces programmer productivity and the progress of energy-efficient performance — a critical issue for the long term overall affordability of computing. Because of the Tunnel Vision Syndrome the solutions coming from a few isolated areas, are by far too slow and massively imperfect. Systolic arrays (SA) have been introduced by a mathematician. His synthesis method was “of course” algebraic, supporting only a few applications and sequencing concepts were “not his job”. A decade later we transformed this SA draft into a general purpose machine paradigm which was presented at the 3rd and 8th through 11th ASAP. The acceptance of our other fundamental idea, Term Rewriting System (TRS) top-down use for microchip design EDA, was delayed by the TRS expert scene: by 30 years! The R&D landscape requires radically new solutions. We must avoid the reductionist philosophies of most specialized research areas and introduce connected thinking to bridge the gaps between different paradigms and between several abstraction levels. We must urgently rethink all basic assumptions and far-reaching cooperation patterns.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"456 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2013.6567541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2013.6567541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

只提供摘要形式。多核困境不仅大大降低了程序员的生产力和节能性能的进步——这是计算长期整体可负担性的关键问题。由于隧道视觉综合症,来自少数孤立地区的解决方案太慢,而且非常不完善。收缩阵列(SA)是由一位数学家提出的。他的合成方法“当然”是代数的,只支持少数应用,排序概念“不是他的工作”。十年后,我们将这个SA草案转化为通用机器范例,并在第3、8至11届ASAP上提出。接受我们的另一个基本理念,术语重写系统(TRS)自上而下用于微芯片设计EDA,被TRS专家现场推迟了30年!研发领域需要全新的解决方案。我们必须避免大多数专业研究领域的还原论哲学,并引入关联思维来弥合不同范式之间和几个抽象层次之间的差距。我们必须紧急反思所有基本假设和长远合作模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The tunnel vision syndrome: Massively delaying progress
Summary form only given. Not only the multicore dilemma massively reduces programmer productivity and the progress of energy-efficient performance — a critical issue for the long term overall affordability of computing. Because of the Tunnel Vision Syndrome the solutions coming from a few isolated areas, are by far too slow and massively imperfect. Systolic arrays (SA) have been introduced by a mathematician. His synthesis method was “of course” algebraic, supporting only a few applications and sequencing concepts were “not his job”. A decade later we transformed this SA draft into a general purpose machine paradigm which was presented at the 3rd and 8th through 11th ASAP. The acceptance of our other fundamental idea, Term Rewriting System (TRS) top-down use for microchip design EDA, was delayed by the TRS expert scene: by 30 years! The R&D landscape requires radically new solutions. We must avoid the reductionist philosophies of most specialized research areas and introduce connected thinking to bridge the gaps between different paradigms and between several abstraction levels. We must urgently rethink all basic assumptions and far-reaching cooperation patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Conference Chairs - ASAP 2020 Message from the ASAP 2016 chairs An IEEE 754 double-precision floating-point multiplier for denormalized and normalized floating-point numbers Application-set driven exploration for custom processor architectures Stochastic circuit design and performance evaluation of vector quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1