S. Song, B. Colombeau, M. Bauer, V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, J. Huang, B. Cheng, C. Chidambaram, S. Natarajan
{"title":"2nm节点:用于人工智能和下一代智能移动设备的FinFET与纳米板晶体管架构的基准","authors":"S. Song, B. Colombeau, M. Bauer, V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, J. Huang, B. Cheng, C. Chidambaram, S. Natarajan","doi":"10.23919/VLSIT.2019.8776478","DOIUrl":null,"url":null,"abstract":"We explore four different technology and design options for transistors and library cells for a low power supply voltage of 0.4 V and circuit statistics representative of artificial intelligence (AI) applications. The design rules correspond to 2nm node with cell heights of 100~110 nm and 30 nm gate pitch. Holistic analysis of the RO (Ring Oscillator) behavior, including MOL parasitics, all major variability sources, and stress proximity effects suggests that different FinFET and nanoslab transistor design options exhibit a wide range of power and performance differences. The key to improve FinFET PPA is to avoid fin cuts to maintain strong PMOS performance, and a key to improve SS corner delay is to use nanoslabs with tighter variability control.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"136 1","pages":"T206-T207"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"2nm Node: Benchmarking FinFET vs Nano-Slab Transistor Architectures for Artificial Intelligence and Next Gen Smart Mobile Devices\",\"authors\":\"S. Song, B. Colombeau, M. Bauer, V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, J. Huang, B. Cheng, C. Chidambaram, S. Natarajan\",\"doi\":\"10.23919/VLSIT.2019.8776478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore four different technology and design options for transistors and library cells for a low power supply voltage of 0.4 V and circuit statistics representative of artificial intelligence (AI) applications. The design rules correspond to 2nm node with cell heights of 100~110 nm and 30 nm gate pitch. Holistic analysis of the RO (Ring Oscillator) behavior, including MOL parasitics, all major variability sources, and stress proximity effects suggests that different FinFET and nanoslab transistor design options exhibit a wide range of power and performance differences. The key to improve FinFET PPA is to avoid fin cuts to maintain strong PMOS performance, and a key to improve SS corner delay is to use nanoslabs with tighter variability control.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"136 1\",\"pages\":\"T206-T207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2nm Node: Benchmarking FinFET vs Nano-Slab Transistor Architectures for Artificial Intelligence and Next Gen Smart Mobile Devices
We explore four different technology and design options for transistors and library cells for a low power supply voltage of 0.4 V and circuit statistics representative of artificial intelligence (AI) applications. The design rules correspond to 2nm node with cell heights of 100~110 nm and 30 nm gate pitch. Holistic analysis of the RO (Ring Oscillator) behavior, including MOL parasitics, all major variability sources, and stress proximity effects suggests that different FinFET and nanoslab transistor design options exhibit a wide range of power and performance differences. The key to improve FinFET PPA is to avoid fin cuts to maintain strong PMOS performance, and a key to improve SS corner delay is to use nanoslabs with tighter variability control.