水葫芦炭化温度对电磁干扰屏蔽雷达制作及屏蔽效果的影响分析

A. M. Imammuddin, S. Suparman, W. Suprapto, A. A. Sonief
{"title":"水葫芦炭化温度对电磁干扰屏蔽雷达制作及屏蔽效果的影响分析","authors":"A. M. Imammuddin, S. Suparman, W. Suprapto, A. A. Sonief","doi":"10.15587/1729-4061.2021.224219","DOIUrl":null,"url":null,"abstract":"The need to increase the ability of water hyacinth composites as EMI radar protection is related to the carbonization process of organic materials. This research aimed to determine the effect of water hyacinth carbonization temperature on the effectiveness of fabrication and EMI shielding radar. The research method includes the preparations such as cutting, washing, and drying the water hyacinth. The drying process is carried out using an oven with a temperature of 70 °C for 4 days. Then the water hyacinth is mashed until it reaches the 80 mesh size. Then the carbonization process is carried out, with variations in carbonization temperature ranging from 500 °C, 600 °C, 700 °C, 800 °C, 900 °C and 1,000 °C, with a heat increase speed of 3 °C/minutes. After reaching the specified temperature, a holding time is then carried out for 1 hour. Furthermore, the composite composition of 30 % water hyacinth activated carbon powder and 70 % phenol-formaldehyde (PF) resin was molded using a hot press with a pressure of 300 kg/cm2 at 180 °C for 10 minutes. The results showed that the water hyacinth composite could be used as an EMI protection material at the X-Band frequency (8–12.5 GHz). Where the electrical conductivity and EMI SE increases with increasing carbonization temperature. Water hyacinth composites at a carbonization temperature of 1,000 °C showed the highest electrical conductivity and the highest EMI SE, respectively 4.64∙10-2 S/cm and 41.15 dB (attenuation 99.99 %) at a frequency of 8 GHz. The high absorption contribution is associated with the synergy combination of KCl and the pore structure of the goitre. KCl contributes to the magnetic properties and pore structure with high electrical conductivity values.","PeriodicalId":18279,"journal":{"name":"MatSciRN: Computational Studies of Inorganic & Organic Materials (Topic)","volume":"317 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analysis of Effect of Water Hyacinth Carbonization Temperature on Fabrication and EMI Shielding Radar\",\"authors\":\"A. M. Imammuddin, S. Suparman, W. Suprapto, A. A. Sonief\",\"doi\":\"10.15587/1729-4061.2021.224219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to increase the ability of water hyacinth composites as EMI radar protection is related to the carbonization process of organic materials. This research aimed to determine the effect of water hyacinth carbonization temperature on the effectiveness of fabrication and EMI shielding radar. The research method includes the preparations such as cutting, washing, and drying the water hyacinth. The drying process is carried out using an oven with a temperature of 70 °C for 4 days. Then the water hyacinth is mashed until it reaches the 80 mesh size. Then the carbonization process is carried out, with variations in carbonization temperature ranging from 500 °C, 600 °C, 700 °C, 800 °C, 900 °C and 1,000 °C, with a heat increase speed of 3 °C/minutes. After reaching the specified temperature, a holding time is then carried out for 1 hour. Furthermore, the composite composition of 30 % water hyacinth activated carbon powder and 70 % phenol-formaldehyde (PF) resin was molded using a hot press with a pressure of 300 kg/cm2 at 180 °C for 10 minutes. The results showed that the water hyacinth composite could be used as an EMI protection material at the X-Band frequency (8–12.5 GHz). Where the electrical conductivity and EMI SE increases with increasing carbonization temperature. Water hyacinth composites at a carbonization temperature of 1,000 °C showed the highest electrical conductivity and the highest EMI SE, respectively 4.64∙10-2 S/cm and 41.15 dB (attenuation 99.99 %) at a frequency of 8 GHz. The high absorption contribution is associated with the synergy combination of KCl and the pore structure of the goitre. KCl contributes to the magnetic properties and pore structure with high electrical conductivity values.\",\"PeriodicalId\":18279,\"journal\":{\"name\":\"MatSciRN: Computational Studies of Inorganic & Organic Materials (Topic)\",\"volume\":\"317 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Computational Studies of Inorganic & Organic Materials (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2021.224219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Computational Studies of Inorganic & Organic Materials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2021.224219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水葫芦复合材料作为电磁干扰雷达防护材料,其防护能力的提高与有机材料的炭化过程有关。研究水葫芦炭化温度对电磁干扰屏蔽雷达制作效果和屏蔽效果的影响。研究方法包括水葫芦的切割、洗涤、干燥等制备方法。干燥过程使用温度为70℃的烘箱进行4天。然后将水葫芦捣碎至80目大小。然后进行炭化过程,炭化温度变化范围为500℃、600℃、700℃、800℃、900℃和1000℃,升温速度为3℃/分钟。达到规定温度后,保温1小时。此外,30%水葫芦活性炭粉和70%酚醛(PF)树脂的复合成分使用热压机,压力为300 kg/cm2,温度为180℃,成型时间为10分钟。结果表明,水葫芦复合材料可作为x波段(8-12.5 GHz)的电磁干扰防护材料。电导率和电磁干扰系数随炭化温度的升高而增大。炭化温度为1000℃的水葫芦复合材料在8 GHz频率下的电导率最高,EMI SE最高,分别为4.64∙10-2 S/cm和41.15 dB(衰减99.99%)。高吸收贡献与KCl与甲状腺孔结构的协同作用有关。KCl有助于提高磁性能和孔隙结构的电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Analysis of Effect of Water Hyacinth Carbonization Temperature on Fabrication and EMI Shielding Radar
The need to increase the ability of water hyacinth composites as EMI radar protection is related to the carbonization process of organic materials. This research aimed to determine the effect of water hyacinth carbonization temperature on the effectiveness of fabrication and EMI shielding radar. The research method includes the preparations such as cutting, washing, and drying the water hyacinth. The drying process is carried out using an oven with a temperature of 70 °C for 4 days. Then the water hyacinth is mashed until it reaches the 80 mesh size. Then the carbonization process is carried out, with variations in carbonization temperature ranging from 500 °C, 600 °C, 700 °C, 800 °C, 900 °C and 1,000 °C, with a heat increase speed of 3 °C/minutes. After reaching the specified temperature, a holding time is then carried out for 1 hour. Furthermore, the composite composition of 30 % water hyacinth activated carbon powder and 70 % phenol-formaldehyde (PF) resin was molded using a hot press with a pressure of 300 kg/cm2 at 180 °C for 10 minutes. The results showed that the water hyacinth composite could be used as an EMI protection material at the X-Band frequency (8–12.5 GHz). Where the electrical conductivity and EMI SE increases with increasing carbonization temperature. Water hyacinth composites at a carbonization temperature of 1,000 °C showed the highest electrical conductivity and the highest EMI SE, respectively 4.64∙10-2 S/cm and 41.15 dB (attenuation 99.99 %) at a frequency of 8 GHz. The high absorption contribution is associated with the synergy combination of KCl and the pore structure of the goitre. KCl contributes to the magnetic properties and pore structure with high electrical conductivity values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Source Analysis of Volatile Flavor Compounds in Paper Packaged Yogurt by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Effects of Geometric Array and Size of Internal Voids on Tensile Ductility of AZ31 Magnesium Alloy Sheets Catalytic Conversion of High Fructose Corn Syrup to Methyl Lactate with Coo@Silicalite-1 Facilitation of Detwinning Through Controlling Crystal Structure in Ti-Zr-Ni-Pd High Temperature Shape Memory Alloys Transformation of Calcite CaCO3 to Fluorite CaF2 by Action of KF Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1