{"title":"19世纪晚期一系列异常恶劣的天气事件","authors":"J. Callaghan","doi":"10.1071/es19041","DOIUrl":null,"url":null,"abstract":"\nBetween 1883 and 1898, 24 intense tropical cyclones and extra tropical cyclones directly impacted on the southern Queensland and northern New South Wales coasts, with at least 200 fatalities in what was then a sparsely populated area. These events also caused record floods and rainfall, for example Brisbane City experienced its two largest ever floods over this period and Brisbane City set a 24-h rainfall record that still stands today. Additionally, a 24-h rainfall total of 907mm occurred in a tributary of the upper Brisbane River resulting in a 15-m wall of water advancing down the river. Recent studies have shown that this part of Australia incurs the largest weather-related insurance losses. A major focus in this study is the seas these storms generated, leading to the loss of many marine craft and changes these waves brought to coastal areas. As a famous example of coastal erosion near Brisbane, the continual impacts from large waves caused a channel to form through Stradbroke Island to the open ocean forming two separate islands. Details of how this channel formed are described in relation to the storms. A climatology study of 239 Australian east coast storms that caused severe ocean damage between Brisbane and the Victorian border over the period between 1876 and February 2020 showed that 153 events occurred with a positive Southern Oscillation Index (SOI) trend and 86 events with a negative trend. The most active years were 1893 and 1967, both during positive SOI periods and both dominated by tropical cyclone activity. The 1893 events caused unparalleled floods and strongly contributed to the Jumpinpin breakthrough on Stradbroke Island, and the 1967 event was associated with historical Gold Coast beach erosion causing 9 billion normalised Australian dollars of insurance losses. The study also showed how direct tropical cyclone impacts in the study area decreased markedly following the June 1976 climate shift.\n","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extraordinary sequence of severe weather events in the late-nineteenth century\",\"authors\":\"J. Callaghan\",\"doi\":\"10.1071/es19041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nBetween 1883 and 1898, 24 intense tropical cyclones and extra tropical cyclones directly impacted on the southern Queensland and northern New South Wales coasts, with at least 200 fatalities in what was then a sparsely populated area. These events also caused record floods and rainfall, for example Brisbane City experienced its two largest ever floods over this period and Brisbane City set a 24-h rainfall record that still stands today. Additionally, a 24-h rainfall total of 907mm occurred in a tributary of the upper Brisbane River resulting in a 15-m wall of water advancing down the river. Recent studies have shown that this part of Australia incurs the largest weather-related insurance losses. A major focus in this study is the seas these storms generated, leading to the loss of many marine craft and changes these waves brought to coastal areas. As a famous example of coastal erosion near Brisbane, the continual impacts from large waves caused a channel to form through Stradbroke Island to the open ocean forming two separate islands. Details of how this channel formed are described in relation to the storms. A climatology study of 239 Australian east coast storms that caused severe ocean damage between Brisbane and the Victorian border over the period between 1876 and February 2020 showed that 153 events occurred with a positive Southern Oscillation Index (SOI) trend and 86 events with a negative trend. The most active years were 1893 and 1967, both during positive SOI periods and both dominated by tropical cyclone activity. The 1893 events caused unparalleled floods and strongly contributed to the Jumpinpin breakthrough on Stradbroke Island, and the 1967 event was associated with historical Gold Coast beach erosion causing 9 billion normalised Australian dollars of insurance losses. The study also showed how direct tropical cyclone impacts in the study area decreased markedly following the June 1976 climate shift.\\n\",\"PeriodicalId\":55419,\"journal\":{\"name\":\"Journal of Southern Hemisphere Earth Systems Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Southern Hemisphere Earth Systems Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1071/es19041\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es19041","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Extraordinary sequence of severe weather events in the late-nineteenth century
Between 1883 and 1898, 24 intense tropical cyclones and extra tropical cyclones directly impacted on the southern Queensland and northern New South Wales coasts, with at least 200 fatalities in what was then a sparsely populated area. These events also caused record floods and rainfall, for example Brisbane City experienced its two largest ever floods over this period and Brisbane City set a 24-h rainfall record that still stands today. Additionally, a 24-h rainfall total of 907mm occurred in a tributary of the upper Brisbane River resulting in a 15-m wall of water advancing down the river. Recent studies have shown that this part of Australia incurs the largest weather-related insurance losses. A major focus in this study is the seas these storms generated, leading to the loss of many marine craft and changes these waves brought to coastal areas. As a famous example of coastal erosion near Brisbane, the continual impacts from large waves caused a channel to form through Stradbroke Island to the open ocean forming two separate islands. Details of how this channel formed are described in relation to the storms. A climatology study of 239 Australian east coast storms that caused severe ocean damage between Brisbane and the Victorian border over the period between 1876 and February 2020 showed that 153 events occurred with a positive Southern Oscillation Index (SOI) trend and 86 events with a negative trend. The most active years were 1893 and 1967, both during positive SOI periods and both dominated by tropical cyclone activity. The 1893 events caused unparalleled floods and strongly contributed to the Jumpinpin breakthrough on Stradbroke Island, and the 1967 event was associated with historical Gold Coast beach erosion causing 9 billion normalised Australian dollars of insurance losses. The study also showed how direct tropical cyclone impacts in the study area decreased markedly following the June 1976 climate shift.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.