{"title":"用于化学传感的光子晶体薄膜制备与表征","authors":"M. Ye","doi":"10.5185/amp.2019.1463","DOIUrl":null,"url":null,"abstract":"Functionalized photonic crystal films were prepared for sensing small chemical molecules. First, silica nanospheres were self-assembled to form a colloidal crystal template within a mold. The interstitial space of this template was infiltrated by the hydrogel precursors, which were then allowed to polymerize. Upon removal of silica by hydrofluoric acid etching, a photonic crystal film, which produced a pink structural color, was formed. To add a chemical sensing functionality to the film, the molecules to be sensed were mixed with the hydrogel precursors for molecular imprinting; the amino acid proline was used for this purpose. Characterization of the functionalized photonic crystal film was conducted by optical reflectance measurements and imaging. The nanopores were imaged using SEM after cryogenic freezing of the film samples. Chemical sensing of proline was conducted on the film, with the reflectance peak shifting from 650 nm to 795 nm. Copyright © VBRI Press.","PeriodicalId":7297,"journal":{"name":"Advanced Materials Proceedings","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic Crystal Film Preparation and Characterization for Chemical Sensing\",\"authors\":\"M. Ye\",\"doi\":\"10.5185/amp.2019.1463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functionalized photonic crystal films were prepared for sensing small chemical molecules. First, silica nanospheres were self-assembled to form a colloidal crystal template within a mold. The interstitial space of this template was infiltrated by the hydrogel precursors, which were then allowed to polymerize. Upon removal of silica by hydrofluoric acid etching, a photonic crystal film, which produced a pink structural color, was formed. To add a chemical sensing functionality to the film, the molecules to be sensed were mixed with the hydrogel precursors for molecular imprinting; the amino acid proline was used for this purpose. Characterization of the functionalized photonic crystal film was conducted by optical reflectance measurements and imaging. The nanopores were imaged using SEM after cryogenic freezing of the film samples. Chemical sensing of proline was conducted on the film, with the reflectance peak shifting from 650 nm to 795 nm. Copyright © VBRI Press.\",\"PeriodicalId\":7297,\"journal\":{\"name\":\"Advanced Materials Proceedings\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5185/amp.2019.1463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5185/amp.2019.1463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Photonic Crystal Film Preparation and Characterization for Chemical Sensing
Functionalized photonic crystal films were prepared for sensing small chemical molecules. First, silica nanospheres were self-assembled to form a colloidal crystal template within a mold. The interstitial space of this template was infiltrated by the hydrogel precursors, which were then allowed to polymerize. Upon removal of silica by hydrofluoric acid etching, a photonic crystal film, which produced a pink structural color, was formed. To add a chemical sensing functionality to the film, the molecules to be sensed were mixed with the hydrogel precursors for molecular imprinting; the amino acid proline was used for this purpose. Characterization of the functionalized photonic crystal film was conducted by optical reflectance measurements and imaging. The nanopores were imaged using SEM after cryogenic freezing of the film samples. Chemical sensing of proline was conducted on the film, with the reflectance peak shifting from 650 nm to 795 nm. Copyright © VBRI Press.