R. Han, Yan Yan, Qian Yu, Zeping Zhang, Qiang Wang, Rui Yang, Y. Bai, Xing Zhang
{"title":"局部增强开孔镍钛诺支架用于颅内血管瘤的制备","authors":"R. Han, Yan Yan, Qian Yu, Zeping Zhang, Qiang Wang, Rui Yang, Y. Bai, Xing Zhang","doi":"10.1080/10667857.2023.2196165","DOIUrl":null,"url":null,"abstract":"ABSTRACT Intracranial vascular stent-assisted coil embolization has been widely used for intracranial vascular aneurysm. However, there are serious complication risks, such as thromboembolism, stent migration and spring coil prolapse, due to the inappropriate radial force, poor wall apposition and oversized mesh. Therefore, a locally-reinforced intracranial vascular stent was designed to improve the radial force and wall apposition performance. Based on finite element analysis and substantial measurements, the local radial force has improved 38.9% and thestability of the coil embolism has been enhanced as well. The releasing test in vitro suggests the stent can adhere to the vascular wall very well without the ‘Gator backing’ phenomenon. Furthermore, the implanting test in vivo shows complete endothelialization without restenosis and hyperplasia in 4 weeks. The outcomes of this study provide optimal design of the locally reinforced nitinol stent used for intracranial aneurysm therapy with reduced risks of vascular embolism and haemorrhagic apoplexy after implantation.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"15 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of the locally reinforced open-cell nitinol stents for intracranial vascular aneurysm\",\"authors\":\"R. Han, Yan Yan, Qian Yu, Zeping Zhang, Qiang Wang, Rui Yang, Y. Bai, Xing Zhang\",\"doi\":\"10.1080/10667857.2023.2196165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Intracranial vascular stent-assisted coil embolization has been widely used for intracranial vascular aneurysm. However, there are serious complication risks, such as thromboembolism, stent migration and spring coil prolapse, due to the inappropriate radial force, poor wall apposition and oversized mesh. Therefore, a locally-reinforced intracranial vascular stent was designed to improve the radial force and wall apposition performance. Based on finite element analysis and substantial measurements, the local radial force has improved 38.9% and thestability of the coil embolism has been enhanced as well. The releasing test in vitro suggests the stent can adhere to the vascular wall very well without the ‘Gator backing’ phenomenon. Furthermore, the implanting test in vivo shows complete endothelialization without restenosis and hyperplasia in 4 weeks. The outcomes of this study provide optimal design of the locally reinforced nitinol stent used for intracranial aneurysm therapy with reduced risks of vascular embolism and haemorrhagic apoplexy after implantation.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2196165\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2196165","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of the locally reinforced open-cell nitinol stents for intracranial vascular aneurysm
ABSTRACT Intracranial vascular stent-assisted coil embolization has been widely used for intracranial vascular aneurysm. However, there are serious complication risks, such as thromboembolism, stent migration and spring coil prolapse, due to the inappropriate radial force, poor wall apposition and oversized mesh. Therefore, a locally-reinforced intracranial vascular stent was designed to improve the radial force and wall apposition performance. Based on finite element analysis and substantial measurements, the local radial force has improved 38.9% and thestability of the coil embolism has been enhanced as well. The releasing test in vitro suggests the stent can adhere to the vascular wall very well without the ‘Gator backing’ phenomenon. Furthermore, the implanting test in vivo shows complete endothelialization without restenosis and hyperplasia in 4 weeks. The outcomes of this study provide optimal design of the locally reinforced nitinol stent used for intracranial aneurysm therapy with reduced risks of vascular embolism and haemorrhagic apoplexy after implantation.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.