基于(PVA/PVP)的共混电解质的FTIR和电学行为

Fatima ALjubouri, Mohammed Kadhim Jawad
{"title":"基于(PVA/PVP)的共混电解质的FTIR和电学行为","authors":"Fatima ALjubouri, Mohammed Kadhim Jawad","doi":"10.30723/ijp.v20i1.1093","DOIUrl":null,"url":null,"abstract":"Solution cast method was used to create the polymer electrolytes. Under certain circumstances, the electrolyte content of polymers was determined using constant percent PVA/PVP(50:50),EC and PC (1:1) with various quantities of KI (10, 20, 30, 40, 50 wt. %) and iodine I2 = 10 % of salt wt. The complicated formation of polymer blends was validated by FTIR investigations. Electrical conductivity was measured using an impedance analyzer at frequencies ranging from 50 Hz to 1MHz and temperatures ranging from 293 K to 343 K. At ambient temperature, an electrolyte with 50% KI content had a higher electrical conductivity value of 5.3 10-3 (S/cm). The magnitude of electrical conductivity increased as salt content and temperature rose. The blend electrolytes' greater dielectric at lower frequencies might be owing to the dipoles having enough time to align with the electric field, resulting in stronger polarisation. The reduction in activation energy (Ea) suggests that faster-conducting electrolytes prefer to move with less energy.","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTIR and electrical behavior of blend electrolytes based on (PVA/PVP)\",\"authors\":\"Fatima ALjubouri, Mohammed Kadhim Jawad\",\"doi\":\"10.30723/ijp.v20i1.1093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solution cast method was used to create the polymer electrolytes. Under certain circumstances, the electrolyte content of polymers was determined using constant percent PVA/PVP(50:50),EC and PC (1:1) with various quantities of KI (10, 20, 30, 40, 50 wt. %) and iodine I2 = 10 % of salt wt. The complicated formation of polymer blends was validated by FTIR investigations. Electrical conductivity was measured using an impedance analyzer at frequencies ranging from 50 Hz to 1MHz and temperatures ranging from 293 K to 343 K. At ambient temperature, an electrolyte with 50% KI content had a higher electrical conductivity value of 5.3 10-3 (S/cm). The magnitude of electrical conductivity increased as salt content and temperature rose. The blend electrolytes' greater dielectric at lower frequencies might be owing to the dipoles having enough time to align with the electric field, resulting in stronger polarisation. The reduction in activation energy (Ea) suggests that faster-conducting electrolytes prefer to move with less energy.\",\"PeriodicalId\":14653,\"journal\":{\"name\":\"Iraqi Journal of Physics (IJP)\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Physics (IJP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30723/ijp.v20i1.1093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v20i1.1093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用溶液铸造法制备聚合物电解质。在一定的条件下,聚合物的电解质含量采用固定比例的PVA/PVP(50:50),EC和PC(1:1),不同数量的KI (10,20,30,40,50 wt. %)和碘I2 = 10%的盐wt来测定。FTIR研究证实了聚合物共混物的复杂形成。电导率测量使用阻抗分析仪,频率范围为50 Hz至1MHz,温度范围为293 K至343 K。常温下,KI含量为50%的电解质电导率较高,为5.3 10-3 (S/cm)。随着含盐量和温度的升高,电导率的幅度增大。混合电解质在较低频率下的更大介电可能是由于偶极子有足够的时间与电场对齐,从而产生更强的极化。活化能(Ea)的降低表明,导电快的电解质倾向于以更少的能量运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FTIR and electrical behavior of blend electrolytes based on (PVA/PVP)
Solution cast method was used to create the polymer electrolytes. Under certain circumstances, the electrolyte content of polymers was determined using constant percent PVA/PVP(50:50),EC and PC (1:1) with various quantities of KI (10, 20, 30, 40, 50 wt. %) and iodine I2 = 10 % of salt wt. The complicated formation of polymer blends was validated by FTIR investigations. Electrical conductivity was measured using an impedance analyzer at frequencies ranging from 50 Hz to 1MHz and temperatures ranging from 293 K to 343 K. At ambient temperature, an electrolyte with 50% KI content had a higher electrical conductivity value of 5.3 10-3 (S/cm). The magnitude of electrical conductivity increased as salt content and temperature rose. The blend electrolytes' greater dielectric at lower frequencies might be owing to the dipoles having enough time to align with the electric field, resulting in stronger polarisation. The reduction in activation energy (Ea) suggests that faster-conducting electrolytes prefer to move with less energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of The Structural, Optical, and Morphological Properties of Sno2 Nanofilms under the Influence of Gamma Rays Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films. Photometry technique to map elements’ distribution on comets’ nuclei surfaces by using the new method. Influence of NiTi Spring Dimensions and Temperature on the Actuator Properties Investigation of Numerical Simulation for Adaptive Optics System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1