{"title":"受淀粉样蛋白-β影响的Ca2+振荡的数字化实现","authors":"Mahsasadat Seyedbarhagh, A. Ahmadi, M. Ahmadi","doi":"10.1109/MWSCAS47672.2021.9531702","DOIUrl":null,"url":null,"abstract":"Any dysregulation for intracellular Ca2+ dynamic with abnormally accumulation of Amyloid beta (Aβ) plaques can cause neuroinflammation which leads to the development of Alzheimer’s Disease (AD). In this paper, a multiplierless digital design with COordinate Rotation DIgital Computer (CORDIC) algorithm according to a biologically computational model including IP3 receptors (IPR), plasma membrane pump, a sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump, ryanodine receptors channels, and general membrane leak is represented. Hardware implementation and the numerical analysis illustrates that, the CORDIC-based intracellular Ca2+ dynamics can emulate the same biochemical behavior of the Ca2+ in cells with negligible variance.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"68 5 1","pages":"665-668"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Digital Realization of Ca2+ Oscillation With Impact of Amyloid-β\",\"authors\":\"Mahsasadat Seyedbarhagh, A. Ahmadi, M. Ahmadi\",\"doi\":\"10.1109/MWSCAS47672.2021.9531702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any dysregulation for intracellular Ca2+ dynamic with abnormally accumulation of Amyloid beta (Aβ) plaques can cause neuroinflammation which leads to the development of Alzheimer’s Disease (AD). In this paper, a multiplierless digital design with COordinate Rotation DIgital Computer (CORDIC) algorithm according to a biologically computational model including IP3 receptors (IPR), plasma membrane pump, a sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump, ryanodine receptors channels, and general membrane leak is represented. Hardware implementation and the numerical analysis illustrates that, the CORDIC-based intracellular Ca2+ dynamics can emulate the same biochemical behavior of the Ca2+ in cells with negligible variance.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"68 5 1\",\"pages\":\"665-668\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital Realization of Ca2+ Oscillation With Impact of Amyloid-β
Any dysregulation for intracellular Ca2+ dynamic with abnormally accumulation of Amyloid beta (Aβ) plaques can cause neuroinflammation which leads to the development of Alzheimer’s Disease (AD). In this paper, a multiplierless digital design with COordinate Rotation DIgital Computer (CORDIC) algorithm according to a biologically computational model including IP3 receptors (IPR), plasma membrane pump, a sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump, ryanodine receptors channels, and general membrane leak is represented. Hardware implementation and the numerical analysis illustrates that, the CORDIC-based intracellular Ca2+ dynamics can emulate the same biochemical behavior of the Ca2+ in cells with negligible variance.