{"title":"基于agent的荒野搜救失踪者动力学模型","authors":"Amanda Hashimoto, N. Abaid","doi":"10.1115/dscc2019-9222","DOIUrl":null,"url":null,"abstract":"\n In this paper, we introduce an agent-based model of lost person behavior that may be used to improve current methods for wilderness search and rescue (SAR). The model defines agents moving on a landscape with behavior considered as a random variable. The behavior uses a distribution of four known lost person behavior strategies in order to simulate possible trajectories for the agent. We simulate all possible distributions of behaviors in the model and compute distributions of horizontal distances traveled in a fixed time. By comparing these results to analogous data from a database of lost person cases, we explore the model’s validity with respect to real-world data.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Agent-Based Model of Lost Person Dynamics for Enabling Wilderness Search and Rescue\",\"authors\":\"Amanda Hashimoto, N. Abaid\",\"doi\":\"10.1115/dscc2019-9222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we introduce an agent-based model of lost person behavior that may be used to improve current methods for wilderness search and rescue (SAR). The model defines agents moving on a landscape with behavior considered as a random variable. The behavior uses a distribution of four known lost person behavior strategies in order to simulate possible trajectories for the agent. We simulate all possible distributions of behaviors in the model and compute distributions of horizontal distances traveled in a fixed time. By comparing these results to analogous data from a database of lost person cases, we explore the model’s validity with respect to real-world data.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An Agent-Based Model of Lost Person Dynamics for Enabling Wilderness Search and Rescue
In this paper, we introduce an agent-based model of lost person behavior that may be used to improve current methods for wilderness search and rescue (SAR). The model defines agents moving on a landscape with behavior considered as a random variable. The behavior uses a distribution of four known lost person behavior strategies in order to simulate possible trajectories for the agent. We simulate all possible distributions of behaviors in the model and compute distributions of horizontal distances traveled in a fixed time. By comparing these results to analogous data from a database of lost person cases, we explore the model’s validity with respect to real-world data.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.