{"title":"低压ZnO双栅薄膜晶体管电路","authors":"Y. Li, J. I. Ramírez, K. G. Sun, T. Jackson","doi":"10.1109/DRC.2012.6256969","DOIUrl":null,"url":null,"abstract":"We report here double-gate ZnO thin film transistor (TFT) circuits with operation at low voltage. TFTs with low voltage operation have been reported previously, but often use very thin (few nm thick) gate dielectric which may limit manufacturability. Oxide semiconductor-based TFTs have been extensively studied as competitive candidates for next-generation display technology and other large-area electronics. For many applications, operation at voltages compatible with low-voltage CMOS is important. Doublegate TFTs are of interest because they allow threshold voltage tuning, improved device performance, and circuit applications like mixers. We have previously reported bottom-gate ZnO TFTs and circuits fabricated on glass and flexible polymeric substrates using plasma enhanced atomic layer deposition (PEALD). Here we report double-gate ZnO TFTs and circuits fabricated on glass substrates using PEALD with a maximum process temperature of 200 °C. Compared to bottom-gate ZnO TFTs, doublegate ZnO TFTs have higher mobility, and reduced substhreshold slope. In these devices, the top gate can be used to vary the bottom-gate threshold voltage by more than 4 V. This allows the logic transition point for circuits to be adjusted as desired and allows logic operation at low voltage. 15 stage double-gate ZnO TFT ring oscillators operate well with VDD = 1.2 V, ID = 32 μA, and propagation delay of 2.1 μs/stage.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"22 1","pages":"239-240"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-voltage ZnO double-gate thin film transistor circuits\",\"authors\":\"Y. Li, J. I. Ramírez, K. G. Sun, T. Jackson\",\"doi\":\"10.1109/DRC.2012.6256969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report here double-gate ZnO thin film transistor (TFT) circuits with operation at low voltage. TFTs with low voltage operation have been reported previously, but often use very thin (few nm thick) gate dielectric which may limit manufacturability. Oxide semiconductor-based TFTs have been extensively studied as competitive candidates for next-generation display technology and other large-area electronics. For many applications, operation at voltages compatible with low-voltage CMOS is important. Doublegate TFTs are of interest because they allow threshold voltage tuning, improved device performance, and circuit applications like mixers. We have previously reported bottom-gate ZnO TFTs and circuits fabricated on glass and flexible polymeric substrates using plasma enhanced atomic layer deposition (PEALD). Here we report double-gate ZnO TFTs and circuits fabricated on glass substrates using PEALD with a maximum process temperature of 200 °C. Compared to bottom-gate ZnO TFTs, doublegate ZnO TFTs have higher mobility, and reduced substhreshold slope. In these devices, the top gate can be used to vary the bottom-gate threshold voltage by more than 4 V. This allows the logic transition point for circuits to be adjusted as desired and allows logic operation at low voltage. 15 stage double-gate ZnO TFT ring oscillators operate well with VDD = 1.2 V, ID = 32 μA, and propagation delay of 2.1 μs/stage.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"22 1\",\"pages\":\"239-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6256969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-voltage ZnO double-gate thin film transistor circuits
We report here double-gate ZnO thin film transistor (TFT) circuits with operation at low voltage. TFTs with low voltage operation have been reported previously, but often use very thin (few nm thick) gate dielectric which may limit manufacturability. Oxide semiconductor-based TFTs have been extensively studied as competitive candidates for next-generation display technology and other large-area electronics. For many applications, operation at voltages compatible with low-voltage CMOS is important. Doublegate TFTs are of interest because they allow threshold voltage tuning, improved device performance, and circuit applications like mixers. We have previously reported bottom-gate ZnO TFTs and circuits fabricated on glass and flexible polymeric substrates using plasma enhanced atomic layer deposition (PEALD). Here we report double-gate ZnO TFTs and circuits fabricated on glass substrates using PEALD with a maximum process temperature of 200 °C. Compared to bottom-gate ZnO TFTs, doublegate ZnO TFTs have higher mobility, and reduced substhreshold slope. In these devices, the top gate can be used to vary the bottom-gate threshold voltage by more than 4 V. This allows the logic transition point for circuits to be adjusted as desired and allows logic operation at low voltage. 15 stage double-gate ZnO TFT ring oscillators operate well with VDD = 1.2 V, ID = 32 μA, and propagation delay of 2.1 μs/stage.