利用肠系膜白菌生产右旋糖酐生物絮凝剂

M. De La Cruz-Noriega, S. Rojas-Flores, Santiago M. Benites, M. A. Quezada Álvarez, N. M. Otiniano García, Magda Rodríguez Yupanqui
{"title":"利用肠系膜白菌生产右旋糖酐生物絮凝剂","authors":"M. De La Cruz-Noriega, S. Rojas-Flores, Santiago M. Benites, M. A. Quezada Álvarez, N. M. Otiniano García, Magda Rodríguez Yupanqui","doi":"10.5755/j01.erem.78.1.29591","DOIUrl":null,"url":null,"abstract":"In this study, we aimed to determine the in vitro activity of Leuconostoc mesenteroides var. mesenteroides isolatedfrom sugar-industry effluents to produce a dextran bioflocculant from sucrose as a low-cost substrate.L. mesenteroides strains present in residual cane juice from a sugar factory were isolated and biochemicallyidentified using Mayeux, Sandine, and Elliker agar (MSE) as a selective medium. The strain number 3 (LM03) wasbiochemically identified as L. mesenteroides var. mesenteroides, which was used for this study. The concentrationof dextran was quantified by dry weight, the morphology and purity were evaluated using Fourier-transforminfrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy(EDS). Flocculation was evaluated via turbidimetric assays in different pH ranges from sugar-industry effluentsand doses of dextran.To evaluate the flocculant activity according to the effect of pH, a jar test kit from Phipps and Bird, USA, wasused with the sample recollected from the effluent (sugar industry). The pH of the samples was adjusted to 7, 8,9, 10 and 11, with a dose of 40 ppm (dextran dose) at a fast and slow speed of 150 and 50 rpm, respectively. Toevaluate the influence of the dose of dextran, values of 5, 20 and 40 ppm were used with fast speeds of 180–150rpm and slow speeds of 30–50 rpm, respectively.The strain (LM03) was able to produce the highest concentration of dextran (26.87 g/L) in 76 h of incubation. Thepresence of dextran was identified in the MSE agar after incubation and characterized by FTIR, SEM, and EDS.Besides that, we observed that the best flocculation activity was observed at a pH of 9 and a concentration of 40ppm of dextran, with a fast agitation speed of 150 rpm for 5 min and a slow agitation speed of 50 rpm for 15 min,achieving 77.7% removal of turbidity from the sugar factory effluent.L. mesenteroides was responsible for the bioflocculation of dextran in different sugar-industry effluents","PeriodicalId":11703,"journal":{"name":"Environmental Research, Engineering and Management","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Use of Leuconostoc Mesenteroides to Produce a Dextran Bioflocculant\",\"authors\":\"M. De La Cruz-Noriega, S. Rojas-Flores, Santiago M. Benites, M. A. Quezada Álvarez, N. M. Otiniano García, Magda Rodríguez Yupanqui\",\"doi\":\"10.5755/j01.erem.78.1.29591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we aimed to determine the in vitro activity of Leuconostoc mesenteroides var. mesenteroides isolatedfrom sugar-industry effluents to produce a dextran bioflocculant from sucrose as a low-cost substrate.L. mesenteroides strains present in residual cane juice from a sugar factory were isolated and biochemicallyidentified using Mayeux, Sandine, and Elliker agar (MSE) as a selective medium. The strain number 3 (LM03) wasbiochemically identified as L. mesenteroides var. mesenteroides, which was used for this study. The concentrationof dextran was quantified by dry weight, the morphology and purity were evaluated using Fourier-transforminfrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy(EDS). Flocculation was evaluated via turbidimetric assays in different pH ranges from sugar-industry effluentsand doses of dextran.To evaluate the flocculant activity according to the effect of pH, a jar test kit from Phipps and Bird, USA, wasused with the sample recollected from the effluent (sugar industry). The pH of the samples was adjusted to 7, 8,9, 10 and 11, with a dose of 40 ppm (dextran dose) at a fast and slow speed of 150 and 50 rpm, respectively. Toevaluate the influence of the dose of dextran, values of 5, 20 and 40 ppm were used with fast speeds of 180–150rpm and slow speeds of 30–50 rpm, respectively.The strain (LM03) was able to produce the highest concentration of dextran (26.87 g/L) in 76 h of incubation. Thepresence of dextran was identified in the MSE agar after incubation and characterized by FTIR, SEM, and EDS.Besides that, we observed that the best flocculation activity was observed at a pH of 9 and a concentration of 40ppm of dextran, with a fast agitation speed of 150 rpm for 5 min and a slow agitation speed of 50 rpm for 15 min,achieving 77.7% removal of turbidity from the sugar factory effluent.L. mesenteroides was responsible for the bioflocculation of dextran in different sugar-industry effluents\",\"PeriodicalId\":11703,\"journal\":{\"name\":\"Environmental Research, Engineering and Management\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research, Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.erem.78.1.29591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research, Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.erem.78.1.29591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

摘要

在这项研究中,我们旨在确定从制糖工业废水中分离的肠系膜芽孢杆菌(Leuconostoc mesenteroides)的体外活性,以蔗糖作为低成本底物生产葡聚糖生物絮凝剂。采用Mayeux、Sandine和Elliker琼脂(MSE)作为选择培养基,对某糖厂残蔗汁中的肠系膜菌株进行了分离和生化鉴定。菌株3号(LM03)经生化鉴定为L. mesenteroides var. mesenteroides,用于本研究。用干重法测定葡聚糖的浓度,用傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)和能量色散x射线光谱(EDS)评价葡聚糖的形貌和纯度。通过浊度法测定制糖工业废水在不同pH范围和葡聚糖剂量下的絮凝效果。为了根据pH值的影响来评估絮凝剂的活性,使用了美国Phipps and Bird公司的罐子测试试剂盒,对从废水(制糖工业)中收集的样品进行了测试。将样品的pH调整为7、8、9、10和11,以40 ppm(葡聚糖剂量)的剂量分别在150和50 rpm的快、慢转速下进行。为了评估右旋糖酐剂量的影响,分别在180-150rpm的快转速和30 - 50rpm的慢转速下使用5,20和40ppm的值。菌株LM03在培养76 h后葡聚糖的浓度最高,为26.87 g/L。培养后在MSE琼脂中发现葡聚糖的存在,并通过FTIR, SEM和EDS进行了表征。此外,我们还观察到,在pH = 9、葡聚糖浓度为40ppm的条件下,快速搅拌速度为150转/分,搅拌5分钟,慢速搅拌速度为50转/分,搅拌15分钟,絮凝活性最佳,糖厂出水浊度去除率达到77.7%。肠系膜菌负责葡聚糖在不同制糖工业废水中的生物絮凝
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Leuconostoc Mesenteroides to Produce a Dextran Bioflocculant
In this study, we aimed to determine the in vitro activity of Leuconostoc mesenteroides var. mesenteroides isolatedfrom sugar-industry effluents to produce a dextran bioflocculant from sucrose as a low-cost substrate.L. mesenteroides strains present in residual cane juice from a sugar factory were isolated and biochemicallyidentified using Mayeux, Sandine, and Elliker agar (MSE) as a selective medium. The strain number 3 (LM03) wasbiochemically identified as L. mesenteroides var. mesenteroides, which was used for this study. The concentrationof dextran was quantified by dry weight, the morphology and purity were evaluated using Fourier-transforminfrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy(EDS). Flocculation was evaluated via turbidimetric assays in different pH ranges from sugar-industry effluentsand doses of dextran.To evaluate the flocculant activity according to the effect of pH, a jar test kit from Phipps and Bird, USA, wasused with the sample recollected from the effluent (sugar industry). The pH of the samples was adjusted to 7, 8,9, 10 and 11, with a dose of 40 ppm (dextran dose) at a fast and slow speed of 150 and 50 rpm, respectively. Toevaluate the influence of the dose of dextran, values of 5, 20 and 40 ppm were used with fast speeds of 180–150rpm and slow speeds of 30–50 rpm, respectively.The strain (LM03) was able to produce the highest concentration of dextran (26.87 g/L) in 76 h of incubation. Thepresence of dextran was identified in the MSE agar after incubation and characterized by FTIR, SEM, and EDS.Besides that, we observed that the best flocculation activity was observed at a pH of 9 and a concentration of 40ppm of dextran, with a fast agitation speed of 150 rpm for 5 min and a slow agitation speed of 50 rpm for 15 min,achieving 77.7% removal of turbidity from the sugar factory effluent.L. mesenteroides was responsible for the bioflocculation of dextran in different sugar-industry effluents
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research, Engineering and Management
Environmental Research, Engineering and Management Environmental Science-Environmental Engineering
CiteScore
2.40
自引率
0.00%
发文量
32
期刊介绍: First published in 1995, the journal Environmental Research, Engineering and Management (EREM) is an international multidisciplinary journal designed to serve as a roadmap for understanding complex issues and debates of sustainable development. EREM publishes peer-reviewed scientific papers which cover research in the fields of environmental science, engineering (pollution prevention, resource efficiency), management, energy (renewables), agricultural and biological sciences, and social sciences. EREM’s topics of interest include, but are not limited to, the following: environmental research, ecological monitoring, and climate change; environmental pollution – impact assessment, mitigation, and prevention; environmental engineering, sustainable production, and eco innovations; environmental management, strategy, standards, social responsibility; environmental economics, policy, and law; sustainable consumption and education.
期刊最新文献
Challenge of Rainfall Uncertainty in the Study of Deficit Irrigation A Study on Heavy Metal Contamination of Yard Soils and its Remediation Potential by Weedy Species Performance Investigation of Surface Modified Ceramic Microfiltration Membranes of Ionic Water Treatment Production of Xanthan Gum from Inedible Parts of Broccoli and Cauliflower Assessment of Household Waste Generation and Management in Rural Areas: A Case Study in Ha Nam Province, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1