单分子参数本征分布反褶积的期望最大化算法

Werner Baumgartner, Detlev Drenckhahn
{"title":"单分子参数本征分布反褶积的期望最大化算法","authors":"Werner Baumgartner,&nbsp;Detlev Drenckhahn","doi":"10.1016/S0097-8485(01)00122-X","DOIUrl":null,"url":null,"abstract":"<div><p>Values obtained from single molecule techniques exhibit distinct distributions comprising an uncertainty due to random noise convoluted with the intrinsic distribution of the molecule's properties. In the fields of single molecule light microscopy and spectroscopy, force microscopy and spectroscopy as well as other techniques like electrophysiology, sophisticated data analysis algorithms are available which extract the interesting parameters and their uncertainties from the noisy data set. The intrinsic distributions of these parameters contain valuable information about the molecules’ physical and chemical properties, that need to be deconvoluted from the data. Here, we present an expectation–maximisation (EM-) algorithm that estimates the intrinsic distribution in single molecule experiments. The performance is tested by using computer simulations and the application of the method is demonstrated for data from single molecule force spectroscopy.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 4","pages":"Pages 321-326"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00122-X","citationCount":"7","resultStr":"{\"title\":\"An expectation–maximisation algorithm for the deconvolution of the intrinsic distribution of single molecule's parameters\",\"authors\":\"Werner Baumgartner,&nbsp;Detlev Drenckhahn\",\"doi\":\"10.1016/S0097-8485(01)00122-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Values obtained from single molecule techniques exhibit distinct distributions comprising an uncertainty due to random noise convoluted with the intrinsic distribution of the molecule's properties. In the fields of single molecule light microscopy and spectroscopy, force microscopy and spectroscopy as well as other techniques like electrophysiology, sophisticated data analysis algorithms are available which extract the interesting parameters and their uncertainties from the noisy data set. The intrinsic distributions of these parameters contain valuable information about the molecules’ physical and chemical properties, that need to be deconvoluted from the data. Here, we present an expectation–maximisation (EM-) algorithm that estimates the intrinsic distribution in single molecule experiments. The performance is tested by using computer simulations and the application of the method is demonstrated for data from single molecule force spectroscopy.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 4\",\"pages\":\"Pages 321-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00122-X\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009784850100122X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784850100122X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

从单分子技术获得的值表现出明显的分布,其中包括由于随机噪声与分子性质的固有分布相缠绕而产生的不确定性。在单分子光学显微镜和光谱学、力显微镜和光谱学以及电生理学等其他技术领域,可以使用复杂的数据分析算法从嘈杂的数据集中提取有趣的参数及其不确定性。这些参数的内在分布包含有关分子物理和化学性质的宝贵信息,这些信息需要从数据中解卷积。在这里,我们提出了一种期望最大化(EM-)算法,用于估计单分子实验中的固有分布。通过计算机仿真验证了该方法的性能,并对单分子力谱数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An expectation–maximisation algorithm for the deconvolution of the intrinsic distribution of single molecule's parameters

Values obtained from single molecule techniques exhibit distinct distributions comprising an uncertainty due to random noise convoluted with the intrinsic distribution of the molecule's properties. In the fields of single molecule light microscopy and spectroscopy, force microscopy and spectroscopy as well as other techniques like electrophysiology, sophisticated data analysis algorithms are available which extract the interesting parameters and their uncertainties from the noisy data set. The intrinsic distributions of these parameters contain valuable information about the molecules’ physical and chemical properties, that need to be deconvoluted from the data. Here, we present an expectation–maximisation (EM-) algorithm that estimates the intrinsic distribution in single molecule experiments. The performance is tested by using computer simulations and the application of the method is demonstrated for data from single molecule force spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1