背景场景分类对人类区域的影响具有鲁棒性

R. Mase, R. Oami, T. Nomura
{"title":"背景场景分类对人类区域的影响具有鲁棒性","authors":"R. Mase, R. Oami, T. Nomura","doi":"10.1109/ICCE.2013.6486820","DOIUrl":null,"url":null,"abstract":"We propose a background scene classification method robust to the influence of human regions. Conventional methods classify scene of an image by using image features extracted from entire region in the image. Therefore, in these methods, the influence of the human region such as color of the skin and the clothes reduces classification accuracy of the background scene. Our method classifies background scene of an image by using image features extracted from only background region except detected human regions. The experimental results show that the proposed method improves average of the rate at the balance point between recall rate and precision rate in almost all background scenes compared to the conventional method.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"47 1","pages":"116-117"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Background scene classification robust to the influence of human regions\",\"authors\":\"R. Mase, R. Oami, T. Nomura\",\"doi\":\"10.1109/ICCE.2013.6486820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a background scene classification method robust to the influence of human regions. Conventional methods classify scene of an image by using image features extracted from entire region in the image. Therefore, in these methods, the influence of the human region such as color of the skin and the clothes reduces classification accuracy of the background scene. Our method classifies background scene of an image by using image features extracted from only background region except detected human regions. The experimental results show that the proposed method improves average of the rate at the balance point between recall rate and precision rate in almost all background scenes compared to the conventional method.\",\"PeriodicalId\":6432,\"journal\":{\"name\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"47 1\",\"pages\":\"116-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE.2013.6486820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种对人类区域影响具有鲁棒性的背景场景分类方法。传统方法是利用图像中整个区域提取的图像特征对图像进行场景分类。因此,在这些方法中,皮肤颜色、衣服等人体区域的影响会降低背景场景的分类精度。该方法只提取背景区域的图像特征,而不提取检测到的人体区域,对图像的背景场景进行分类。实验结果表明,与传统方法相比,该方法在几乎所有背景场景下都提高了查全率和查准率平衡点的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Background scene classification robust to the influence of human regions
We propose a background scene classification method robust to the influence of human regions. Conventional methods classify scene of an image by using image features extracted from entire region in the image. Therefore, in these methods, the influence of the human region such as color of the skin and the clothes reduces classification accuracy of the background scene. Our method classifies background scene of an image by using image features extracted from only background region except detected human regions. The experimental results show that the proposed method improves average of the rate at the balance point between recall rate and precision rate in almost all background scenes compared to the conventional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring and Controlling Industrial Cyber-Physical Systems with Digital Twin and Augmented Reality Proposal of fault detection and diagnosis system architecture for residential air conditioners based on the Internet of Things PSO and Kalman Filter-Based Node Motion Prediction for Data Collection from Ocean Wireless Sensors Network with UAV Complex activity recognition system based on cascade classifiers and wearable device data Virtualization of residential IoT functionality by using NFV and SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1