基于多风格训练的双峰生成语音识别

J. Galic, B. Markovic
{"title":"基于多风格训练的双峰生成语音识别","authors":"J. Galic, B. Markovic","doi":"10.1109/ZINC50678.2020.9161815","DOIUrl":null,"url":null,"abstract":"In this paper an analysis on the recognition of words from speech database Whi-Spe in normal and whispered phonation, based on the conventional HMM/GMM framework, is presented. The analysis based on multi-style training is performed in the speaker dependent (SD) and speaker independent mode (SI). The analysis showed that a small portion of whisper data in training (10%) is required for the recognition of whisper higher than 90%, for both the SD and SI recognition.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"86 1","pages":"11-14"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Recognition of Bimodal Produced Speech based on Multi-style Training\",\"authors\":\"J. Galic, B. Markovic\",\"doi\":\"10.1109/ZINC50678.2020.9161815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an analysis on the recognition of words from speech database Whi-Spe in normal and whispered phonation, based on the conventional HMM/GMM framework, is presented. The analysis based on multi-style training is performed in the speaker dependent (SD) and speaker independent mode (SI). The analysis showed that a small portion of whisper data in training (10%) is required for the recognition of whisper higher than 90%, for both the SD and SI recognition.\",\"PeriodicalId\":6731,\"journal\":{\"name\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"86 1\",\"pages\":\"11-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC50678.2020.9161815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在传统HMM/GMM框架的基础上,对语音数据库中正常发音和低声发音单词的识别进行了分析。在说话人依赖模式(SD)和说话人独立模式(SI)下进行基于多风格训练的分析。分析表明,对于SD和SI识别,耳语的识别率高于90%,需要训练中的一小部分耳语数据(10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Recognition of Bimodal Produced Speech based on Multi-style Training
In this paper an analysis on the recognition of words from speech database Whi-Spe in normal and whispered phonation, based on the conventional HMM/GMM framework, is presented. The analysis based on multi-style training is performed in the speaker dependent (SD) and speaker independent mode (SI). The analysis showed that a small portion of whisper data in training (10%) is required for the recognition of whisper higher than 90%, for both the SD and SI recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Plant Water and Soil Nutrient Requirements RFM and Classification Predictive Modelling to Improve Response Prediction Rate Utility analysis and rating of energy storages in trolleybus power supply system Face recognition based on selection approach via Canonical Correlation Analysis feature fusion The Concept of Consumer IP Address Preservation Behind the Load Balancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1