{"title":"基于APSO-SD优化的BiLSTM神经网络的5G用户时延预测模型","authors":"Xiaozheng Dang, Di He, Cong Xie","doi":"10.1155/2023/4137614","DOIUrl":null,"url":null,"abstract":"To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"8 1","pages":"4137614:1-4137614:20"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Time Delay Prediction Model of 5G Users Based on the BiLSTM Neural Network Optimized by APSO-SD\",\"authors\":\"Xiaozheng Dang, Di He, Cong Xie\",\"doi\":\"10.1155/2023/4137614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.\",\"PeriodicalId\":23352,\"journal\":{\"name\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"volume\":\"8 1\",\"pages\":\"4137614:1-4137614:20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4137614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4137614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Time Delay Prediction Model of 5G Users Based on the BiLSTM Neural Network Optimized by APSO-SD
To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on three-dimensional stereo mapping is proposed for input feature extraction. Then, an adaptive particle swarm optimization algorithm based on a search perturbation mechanism and differential enhancement strategy (APSO-SD) is proposed for the parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTM model is proposed to predict the time delay of 5G users. The experimental results show that the APSO-SD has a better convergence performance and optimization performance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has better user time delay prediction accuracy in different scenarios.