快速货运列车在侧风作用下过桥的安全性

Jingcheng Wen, Qi Li, Zhenggang Lu
{"title":"快速货运列车在侧风作用下过桥的安全性","authors":"Jingcheng Wen, Qi Li, Zhenggang Lu","doi":"10.1177/09544097231192716","DOIUrl":null,"url":null,"abstract":"Owing to the blunt car body and high design speed of express freight trains, the running safety is significantly affected by crosswinds when the train runs over a bridge; moreover, severe accidents, such as derailment or overturning may occur. Therefore, adequate measures should be adopted to avoid the occurrence of such accidents. In this study, a finite element model of the train, ballastless track, and parameterized 5-span simply supported girder bridge along with modal superposition method are adopted to establish the train-track-bridge coupling dynamic system. Numerical simulation of stochastic wind speed, wind tunnel tests, and computational fluid dynamics (CFD) simulation of vehicle-bridge scale model were conducted to calculate the wind load acting on the train and bridge. The dynamic responses of the bridge and train were evaluated to present the diagrams of wind and train speed limits for safe operation. The results indicated that the running safety of the vehicle declined with the wind and train speeds, and the wheel unloading rate was the most sensitive to wind speed. For safe operation, the train speed must be restricted if the mean wind speed is greater than 22.7 m/s, and an extreme scenario of derailment may occur for a mean wind speed of 34.0 m/s. In addition, the wind speed limit should be appropriately adjusted and improved according to the pier height of the bridge and terrain category. This research provides a theoretical basis and data support for the assessment of safety of express freight trains in actual operation.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety of an express freight train running over a bridge in crosswind\",\"authors\":\"Jingcheng Wen, Qi Li, Zhenggang Lu\",\"doi\":\"10.1177/09544097231192716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the blunt car body and high design speed of express freight trains, the running safety is significantly affected by crosswinds when the train runs over a bridge; moreover, severe accidents, such as derailment or overturning may occur. Therefore, adequate measures should be adopted to avoid the occurrence of such accidents. In this study, a finite element model of the train, ballastless track, and parameterized 5-span simply supported girder bridge along with modal superposition method are adopted to establish the train-track-bridge coupling dynamic system. Numerical simulation of stochastic wind speed, wind tunnel tests, and computational fluid dynamics (CFD) simulation of vehicle-bridge scale model were conducted to calculate the wind load acting on the train and bridge. The dynamic responses of the bridge and train were evaluated to present the diagrams of wind and train speed limits for safe operation. The results indicated that the running safety of the vehicle declined with the wind and train speeds, and the wheel unloading rate was the most sensitive to wind speed. For safe operation, the train speed must be restricted if the mean wind speed is greater than 22.7 m/s, and an extreme scenario of derailment may occur for a mean wind speed of 34.0 m/s. In addition, the wind speed limit should be appropriately adjusted and improved according to the pier height of the bridge and terrain category. This research provides a theoretical basis and data support for the assessment of safety of express freight trains in actual operation.\",\"PeriodicalId\":54567,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544097231192716\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097231192716","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于高速货运列车车体较钝,设计速度较高,列车过桥时侧风对行车安全影响较大;此外,还可能发生严重的事故,如脱轨或倾覆。因此,应采取适当的措施来避免此类事故的发生。本研究采用列车、无砟轨道和参数化五跨简支梁桥的有限元模型,采用模态叠加法建立列车-轨道-桥梁耦合动力系统。通过随机风速数值模拟、风洞试验和车桥比例模型计算流体力学(CFD)模拟,对作用在列车和桥梁上的风荷载进行了计算。对桥梁和列车的动力响应进行了评估,给出了安全运行的风和列车限速图。结果表明:车辆的运行安全性随风速和列车速度的增加而下降,车轮卸载速率对风速最敏感;为保证安全运行,平均风速大于22.7 m/s时必须限制车速,平均风速为34.0 m/s时可能出现脱轨的极端情况。此外,风速限制应根据桥梁桥墩高度和地形类别适当调整和提高。本研究为实际运营中快运货运列车的安全性评价提供了理论依据和数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safety of an express freight train running over a bridge in crosswind
Owing to the blunt car body and high design speed of express freight trains, the running safety is significantly affected by crosswinds when the train runs over a bridge; moreover, severe accidents, such as derailment or overturning may occur. Therefore, adequate measures should be adopted to avoid the occurrence of such accidents. In this study, a finite element model of the train, ballastless track, and parameterized 5-span simply supported girder bridge along with modal superposition method are adopted to establish the train-track-bridge coupling dynamic system. Numerical simulation of stochastic wind speed, wind tunnel tests, and computational fluid dynamics (CFD) simulation of vehicle-bridge scale model were conducted to calculate the wind load acting on the train and bridge. The dynamic responses of the bridge and train were evaluated to present the diagrams of wind and train speed limits for safe operation. The results indicated that the running safety of the vehicle declined with the wind and train speeds, and the wheel unloading rate was the most sensitive to wind speed. For safe operation, the train speed must be restricted if the mean wind speed is greater than 22.7 m/s, and an extreme scenario of derailment may occur for a mean wind speed of 34.0 m/s. In addition, the wind speed limit should be appropriately adjusted and improved according to the pier height of the bridge and terrain category. This research provides a theoretical basis and data support for the assessment of safety of express freight trains in actual operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
10.00%
发文量
91
审稿时长
7 months
期刊介绍: The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.
期刊最新文献
The influence of semi-actively controlled magnetorheological bogie yaw dampers on the guiding behaviour of a railway vehicle in an S-curve: Simulation and on-track test Mechanism and improvement for tail vehicle swaying of power-centralized EMUs Long railway track modelling – A parallel computing approach Research on ultrasonic guided wave-based high-speed turnout switch rail base flaw detection Ballast stiffness estimation based on measurements during dynamic track stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1