为RESTful api自动生成测试oracle

J. Alonso
{"title":"为RESTful api自动生成测试oracle","authors":"J. Alonso","doi":"10.1145/3540250.3559080","DOIUrl":null,"url":null,"abstract":"Test case generation tools for RESTful APIs have proliferated in recent years. However, despite their promising results, they all share the same limitation: they can only detect crashes (i.e., server errors) and disconformities with the API specification. In this paper, we present a technique for the automated generation of test oracles for RESTful APIs through the detection of invariants. In practice, our approach aims to learn the expected properties of the output by analysing previous API requests and their corresponding responses. For this, we extended the popular tool Daikon for dynamic detection of likely invariants. A preliminary evaluation conducted on a set of 8 operations from 6 industrial APIs reveals a total precision of 66.5% (reaching 100% in 2 operations). Moreover, our approach revealed 6 reproducible bugs in APIs with millions of users: Amadeus, GitHub and OMDb.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated generation of test oracles for RESTful APIs\",\"authors\":\"J. Alonso\",\"doi\":\"10.1145/3540250.3559080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test case generation tools for RESTful APIs have proliferated in recent years. However, despite their promising results, they all share the same limitation: they can only detect crashes (i.e., server errors) and disconformities with the API specification. In this paper, we present a technique for the automated generation of test oracles for RESTful APIs through the detection of invariants. In practice, our approach aims to learn the expected properties of the output by analysing previous API requests and their corresponding responses. For this, we extended the popular tool Daikon for dynamic detection of likely invariants. A preliminary evaluation conducted on a set of 8 operations from 6 industrial APIs reveals a total precision of 66.5% (reaching 100% in 2 operations). Moreover, our approach revealed 6 reproducible bugs in APIs with millions of users: Amadeus, GitHub and OMDb.\",\"PeriodicalId\":68155,\"journal\":{\"name\":\"软件产业与工程\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件产业与工程\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1145/3540250.3559080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3559080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用于RESTful api的测试用例生成工具近年来激增。然而,尽管它们的结果很有希望,但它们都有相同的限制:它们只能检测崩溃(即服务器错误)和与API规范的不一致。在本文中,我们提出了一种通过检测不变量来自动生成RESTful api测试oracle的技术。在实践中,我们的方法旨在通过分析以前的API请求及其相应的响应来学习输出的预期属性。为此,我们扩展了流行的工具Daikon,用于动态检测可能的不变量。对6个工业api的8个操作进行了初步评估,总精度为66.5%(2个操作达到100%)。此外,我们的方法揭示了有数百万用户的api中的6个可重复的错误:Amadeus, GitHub和OMDb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated generation of test oracles for RESTful APIs
Test case generation tools for RESTful APIs have proliferated in recent years. However, despite their promising results, they all share the same limitation: they can only detect crashes (i.e., server errors) and disconformities with the API specification. In this paper, we present a technique for the automated generation of test oracles for RESTful APIs through the detection of invariants. In practice, our approach aims to learn the expected properties of the output by analysing previous API requests and their corresponding responses. For this, we extended the popular tool Daikon for dynamic detection of likely invariants. A preliminary evaluation conducted on a set of 8 operations from 6 industrial APIs reveals a total precision of 66.5% (reaching 100% in 2 operations). Moreover, our approach revealed 6 reproducible bugs in APIs with millions of users: Amadeus, GitHub and OMDb.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
676
期刊最新文献
Improving Grading Outcomes in Software Engineering Projects Through Automated Contributions Summaries GRADESTYLE: GitHub-Integrated and Automated Assessment of Java Code Style Improving Assessment of Programming Pattern Knowledge through Code Editing and Revision Designing for Real People: Teaching Agility through User-Centric Service Design Using Focus to Personalise Learning and Feedback in Software Engineering Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1