微波肿瘤治疗及细胞死亡机制研究进展

Mamiko Asano, Jun-Ichi Sugiyama, K. Tabuse
{"title":"微波肿瘤治疗及细胞死亡机制研究进展","authors":"Mamiko Asano, Jun-Ichi Sugiyama, K. Tabuse","doi":"10.3191/thermalmed.35.33","DOIUrl":null,"url":null,"abstract":"Microwaves (frequency: 0.3‒300 GHz) have the ability to heat materials according to their dielectric properties and are used in microwave ovens for heating food and to yield improvements in the synthesis of medicine and decomposition of environmental pollutants, among other applications. In the medical field, microwaves have been used in cancer treatments such as hyperthermia and microwave coagulation therapy, and favorable treatment results have been obtained. Cancer treatments also have advantages for various types of cancers and have few serious side effects. In contrast, in cancer cell death by microwave heating, the cells are reportedly killed via different pathways compared with that by normal heating. In the future, the treatment efficiency needs to be improved, and the associated side effects can be reduced by analyzing the cell death mechanism in detail. In this review, we outline the latest methods of microwave cancer therapy and introduce the mechanism of cancer cell death by microwave irradiation with a focus on authorsʼ reports.","PeriodicalId":23299,"journal":{"name":"Thermal Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Current Microwave Cancer Therapy and Mechanism of Cell Death by Microwave Irradiation\",\"authors\":\"Mamiko Asano, Jun-Ichi Sugiyama, K. Tabuse\",\"doi\":\"10.3191/thermalmed.35.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwaves (frequency: 0.3‒300 GHz) have the ability to heat materials according to their dielectric properties and are used in microwave ovens for heating food and to yield improvements in the synthesis of medicine and decomposition of environmental pollutants, among other applications. In the medical field, microwaves have been used in cancer treatments such as hyperthermia and microwave coagulation therapy, and favorable treatment results have been obtained. Cancer treatments also have advantages for various types of cancers and have few serious side effects. In contrast, in cancer cell death by microwave heating, the cells are reportedly killed via different pathways compared with that by normal heating. In the future, the treatment efficiency needs to be improved, and the associated side effects can be reduced by analyzing the cell death mechanism in detail. In this review, we outline the latest methods of microwave cancer therapy and introduce the mechanism of cancer cell death by microwave irradiation with a focus on authorsʼ reports.\",\"PeriodicalId\":23299,\"journal\":{\"name\":\"Thermal Medicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3191/thermalmed.35.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3191/thermalmed.35.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微波(频率:0.3-300 GHz)具有根据介质特性加热材料的能力,在微波炉中用于加热食品,并在药物合成和环境污染物分解等应用中产生改进。在医学领域,微波已被用于癌症治疗,如热疗和微波凝血治疗,并取得了良好的治疗效果。癌症治疗对各种类型的癌症也有好处,而且几乎没有严重的副作用。相比之下,在微波加热的癌细胞死亡中,据报道,与正常加热相比,细胞通过不同的途径被杀死。在未来,需要通过详细分析细胞死亡机制来提高治疗效率,减少相关副作用。本文综述了微波治疗癌症的最新方法,介绍了微波照射导致癌细胞死亡的机制,重点介绍了作者的报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Current Microwave Cancer Therapy and Mechanism of Cell Death by Microwave Irradiation
Microwaves (frequency: 0.3‒300 GHz) have the ability to heat materials according to their dielectric properties and are used in microwave ovens for heating food and to yield improvements in the synthesis of medicine and decomposition of environmental pollutants, among other applications. In the medical field, microwaves have been used in cancer treatments such as hyperthermia and microwave coagulation therapy, and favorable treatment results have been obtained. Cancer treatments also have advantages for various types of cancers and have few serious side effects. In contrast, in cancer cell death by microwave heating, the cells are reportedly killed via different pathways compared with that by normal heating. In the future, the treatment efficiency needs to be improved, and the associated side effects can be reduced by analyzing the cell death mechanism in detail. In this review, we outline the latest methods of microwave cancer therapy and introduce the mechanism of cancer cell death by microwave irradiation with a focus on authorsʼ reports.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
前立腺肥大症による中等度から重度の下部尿路症状に対する水蒸気温熱治療の多施設ランダム化偽対照比較試験の最終5年間の結果 低温プラズマおよびハイパーサーミア併用効果を用いたがん治療の可能性 Discovery of Mammalian HSP40 and Subsequent Progress 温度と光を感知し相分離する色素タンパク質フィトクロムB Engineering of Probiotic Bacteria System for the Temperature-sensitive Production of Immune Checkpoint Blockade Nanobodies by Intratumor Heating with Focused Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1