LTCC制造在3D,传感器和MEMS应用中的概述和创新

Roderik Hoppener, Ronald van Olmen, Martin De Moya, Joze Stupar
{"title":"LTCC制造在3D,传感器和MEMS应用中的概述和创新","authors":"Roderik Hoppener, Ronald van Olmen, Martin De Moya, Joze Stupar","doi":"10.1109/ISPTS.2012.6260966","DOIUrl":null,"url":null,"abstract":"An overview of the state of the art LTCC process, technology and its applications will be presented. LTCC integrated electronic circuit technology is currently developing rapidly into new areas. Well known for its robustness and suitability for high frequency circuits, LTCC is now developing into new applications such as MEMS sensors and actuators. New possibilities are created by 3D fluidic integration for sensors and micro reactors. With ever increasing requirements for miniaturisation, optimized processing methods have been developed. The new LTCC processing methods enable higher accuracies of the produced parts while facilitating the incorporation of 3D channels in production environments. The higher accuracy methods however also put constraints on the properties of the materials used making it necessary to choose the correct process and material for its application.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"31 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Overview and innovations in LTCC manufacturing for 3D, sensors and MEMS applications\",\"authors\":\"Roderik Hoppener, Ronald van Olmen, Martin De Moya, Joze Stupar\",\"doi\":\"10.1109/ISPTS.2012.6260966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An overview of the state of the art LTCC process, technology and its applications will be presented. LTCC integrated electronic circuit technology is currently developing rapidly into new areas. Well known for its robustness and suitability for high frequency circuits, LTCC is now developing into new applications such as MEMS sensors and actuators. New possibilities are created by 3D fluidic integration for sensors and micro reactors. With ever increasing requirements for miniaturisation, optimized processing methods have been developed. The new LTCC processing methods enable higher accuracies of the produced parts while facilitating the incorporation of 3D channels in production environments. The higher accuracy methods however also put constraints on the properties of the materials used making it necessary to choose the correct process and material for its application.\",\"PeriodicalId\":6431,\"journal\":{\"name\":\"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)\",\"volume\":\"31 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPTS.2012.6260966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文将概述目前最先进的LTCC工艺、技术及其应用。LTCC集成电子电路技术正在迅速向新的领域发展。LTCC以其对高频电路的鲁棒性和适用性而闻名,现在正在开发新的应用,如MEMS传感器和执行器。传感器和微反应器的3D流体集成创造了新的可能性。随着小型化要求的不断提高,优化的加工方法得到了发展。新的LTCC加工方法可以提高生产零件的精度,同时促进在生产环境中结合3D通道。然而,更高精度的方法也对所用材料的性能施加了限制,因此有必要为其应用选择正确的工艺和材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview and innovations in LTCC manufacturing for 3D, sensors and MEMS applications
An overview of the state of the art LTCC process, technology and its applications will be presented. LTCC integrated electronic circuit technology is currently developing rapidly into new areas. Well known for its robustness and suitability for high frequency circuits, LTCC is now developing into new applications such as MEMS sensors and actuators. New possibilities are created by 3D fluidic integration for sensors and micro reactors. With ever increasing requirements for miniaturisation, optimized processing methods have been developed. The new LTCC processing methods enable higher accuracies of the produced parts while facilitating the incorporation of 3D channels in production environments. The higher accuracy methods however also put constraints on the properties of the materials used making it necessary to choose the correct process and material for its application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gas sensing properties of the fluorine-doped tin oxide thin films Prepared by advanced spray pyrolysis Tailoring of optical band gap, morphology and surface wettability of bath deposited nanocrystalline ZnxCd(1−x)S thin films with incorporation of Zn for solar cell application Comparison of micro fabricated C and S bend shape SU-8 polymer waveguide of different bending diameters for maximum sensitivity A theoretical approach to study the temperature dependent performance of a SiC MESFET in sensor application. Effect of RE3+ (RE = Eu, Sm) ion doping on dielectric properties of nano-wollastonite synthesized by combustion method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1