{"title":"克鲁克斯涨落定理中的缺陷","authors":"Gokaran Shukla","doi":"10.33805/2641-7383.104","DOIUrl":null,"url":null,"abstract":"The existence of Crooks fluctuation theorem (even at microscopic level, in a very short time period) is a direct threat to the second law of thermodynamics. In this paper, we will underline the flaw that exists in Crooks fluctuation theorem assumptions, and thus, we will confirm the validity of the second law of thermodynamics at any temperature, pressure, and at any scale (time, and length-scale) in nature. We will validate the Loschmidts paradox, and will show that no physical directional-process can be perfectly-reversible at any non-zero, finite temperature (T>0 K) and pressure (P>0) in nature.","PeriodicalId":11477,"journal":{"name":"Edelweiss Chemical Science Journal","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flaw in Crooks Fluctuation Theorem\",\"authors\":\"Gokaran Shukla\",\"doi\":\"10.33805/2641-7383.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of Crooks fluctuation theorem (even at microscopic level, in a very short time period) is a direct threat to the second law of thermodynamics. In this paper, we will underline the flaw that exists in Crooks fluctuation theorem assumptions, and thus, we will confirm the validity of the second law of thermodynamics at any temperature, pressure, and at any scale (time, and length-scale) in nature. We will validate the Loschmidts paradox, and will show that no physical directional-process can be perfectly-reversible at any non-zero, finite temperature (T>0 K) and pressure (P>0) in nature.\",\"PeriodicalId\":11477,\"journal\":{\"name\":\"Edelweiss Chemical Science Journal\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Edelweiss Chemical Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33805/2641-7383.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edelweiss Chemical Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33805/2641-7383.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The existence of Crooks fluctuation theorem (even at microscopic level, in a very short time period) is a direct threat to the second law of thermodynamics. In this paper, we will underline the flaw that exists in Crooks fluctuation theorem assumptions, and thus, we will confirm the validity of the second law of thermodynamics at any temperature, pressure, and at any scale (time, and length-scale) in nature. We will validate the Loschmidts paradox, and will show that no physical directional-process can be perfectly-reversible at any non-zero, finite temperature (T>0 K) and pressure (P>0) in nature.