单轴变形下页岩声发射模式

IF 1.5 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Geotechnique Letters Pub Date : 2017-12-01 DOI:10.1680/JGELE.17.00056
Y. Wang, C. H. Li, Y. Z. Hu, S. Miao
{"title":"单轴变形下页岩声发射模式","authors":"Y. Wang, C. H. Li, Y. Z. Hu, S. Miao","doi":"10.1680/JGELE.17.00056","DOIUrl":null,"url":null,"abstract":"The brittle fracture mechanism of shale is an important issue to both borehole stability and hydraulic fracturing. A number of experimental studies on shale macroscopic mechanical properties have been carried out; however, the acoustic emission (AE) patterns of anisotropic shale are not fully understood. In this paper, a series of uniaxial compressive strength tests were conducted on cylindrical shale obtained by drilling at different orientations to the bedding plane. The anisotropic failure modes of shale samples have been monitored by real-time AE monitoring and stress–strain response, under ambient conditions and uniaxial stresses. The experimental results suggest that the pronounced bedding planes of shale have a significant influence on the mechanical properties and the AE responses. The AE counts and AE accumulative energy release curves clearly indicate the initiation and propagation of cracks during compression, and the ‘U’ shaped curves well reflect the anisotropic failure mechanism. The sounded...","PeriodicalId":48920,"journal":{"name":"Geotechnique Letters","volume":"13 1","pages":"323-329"},"PeriodicalIF":1.5000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Acoustic emission pattern of shale under uniaxial deformation\",\"authors\":\"Y. Wang, C. H. Li, Y. Z. Hu, S. Miao\",\"doi\":\"10.1680/JGELE.17.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brittle fracture mechanism of shale is an important issue to both borehole stability and hydraulic fracturing. A number of experimental studies on shale macroscopic mechanical properties have been carried out; however, the acoustic emission (AE) patterns of anisotropic shale are not fully understood. In this paper, a series of uniaxial compressive strength tests were conducted on cylindrical shale obtained by drilling at different orientations to the bedding plane. The anisotropic failure modes of shale samples have been monitored by real-time AE monitoring and stress–strain response, under ambient conditions and uniaxial stresses. The experimental results suggest that the pronounced bedding planes of shale have a significant influence on the mechanical properties and the AE responses. The AE counts and AE accumulative energy release curves clearly indicate the initiation and propagation of cracks during compression, and the ‘U’ shaped curves well reflect the anisotropic failure mechanism. The sounded...\",\"PeriodicalId\":48920,\"journal\":{\"name\":\"Geotechnique Letters\",\"volume\":\"13 1\",\"pages\":\"323-329\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotechnique Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/JGELE.17.00056\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnique Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/JGELE.17.00056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

摘要

页岩脆性破裂机理是影响井眼稳定性和水力压裂的重要问题。开展了多项页岩宏观力学特性的实验研究;然而,各向异性页岩的声发射模式尚不完全清楚。本文对沿顺层面不同方向钻取的柱状页岩进行了一系列单轴抗压强度试验。通过实时声发射监测和应力应变响应,在环境条件和单轴应力下监测了页岩样品的各向异性破坏模式。实验结果表明,页岩明显的层理面对其力学性能和声发射响应有显著影响。声发射计数和累积能量释放曲线清楚地反映了压缩过程中裂纹的萌生和扩展,“U”型曲线较好地反映了各向异性破坏机制。听起来……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acoustic emission pattern of shale under uniaxial deformation
The brittle fracture mechanism of shale is an important issue to both borehole stability and hydraulic fracturing. A number of experimental studies on shale macroscopic mechanical properties have been carried out; however, the acoustic emission (AE) patterns of anisotropic shale are not fully understood. In this paper, a series of uniaxial compressive strength tests were conducted on cylindrical shale obtained by drilling at different orientations to the bedding plane. The anisotropic failure modes of shale samples have been monitored by real-time AE monitoring and stress–strain response, under ambient conditions and uniaxial stresses. The experimental results suggest that the pronounced bedding planes of shale have a significant influence on the mechanical properties and the AE responses. The AE counts and AE accumulative energy release curves clearly indicate the initiation and propagation of cracks during compression, and the ‘U’ shaped curves well reflect the anisotropic failure mechanism. The sounded...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotechnique Letters
Geotechnique Letters ENGINEERING, GEOLOGICAL-
CiteScore
4.20
自引率
0.00%
发文量
42
期刊介绍: Géotechnique Letters provides a vehicle for the rapid international dissemination of the latest and most innovative geotechnical research and practice. As an online journal, it is aimed at publishing short papers, intending to foster the quick exchange of the latest advances and most current ideas without the delays imposed by printed journals, whilst still maintaining rigorous peer reviewing standards.
期刊最新文献
Small-strain, non-linear elastic Winkler model for uniaxial loading of suction caisson foundations A new grouting cable without core tube used for reinforcement of fractured rock mass Géotechnique Letters: Referees 2022 Award-winning paper in 2021 Auxiliary plastic potential approach in elastoplasticity for soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1