Yuan Liang, Hao Yu, Chang Yang, Nan Li, Xiuping Li, Xiong Liu, Junfeng Zhao, Wei Yang, Yuangang Wang
{"title":"用SRR调制器和SPP互连的CMOS亚太赫兹片上通信","authors":"Yuan Liang, Hao Yu, Chang Yang, Nan Li, Xiuping Li, Xiong Liu, Junfeng Zhao, Wei Yang, Yuangang Wang","doi":"10.1109/IMWS-AMP.2015.7324965","DOIUrl":null,"url":null,"abstract":"Two novel metamaterial devices including Split Ring Resonator (SRR) modulator and Surface Plasmon Polariton (SPP) interconnect (including SPP T-line and coupler) are proposed with CMOS on-chip integration operated at 140GHz. By introducing sub-wavelength periodical corrugation structure onto T-line, SPP is established to propagate signals with strongly localized surface wave, which results in low crosstalk between two back-to-back placed SPP T-lines. Moreover, by stacking two SRR unit-cells with opposite placement, the SRR based modulator manifests itself as a magnetic metamaterial achieving significant reduction of radiation loss with 23dB extinction ratio at sub-THz. As explored in 65nm CMOS, the proposed surface-wave interconnects and SRR modulator have shown great potential for future sub-THz wireline communication in CMOS.","PeriodicalId":6625,"journal":{"name":"2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","volume":"124 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CMOS sub-THz on-chip communication with SRR modulator and SPP interconnect\",\"authors\":\"Yuan Liang, Hao Yu, Chang Yang, Nan Li, Xiuping Li, Xiong Liu, Junfeng Zhao, Wei Yang, Yuangang Wang\",\"doi\":\"10.1109/IMWS-AMP.2015.7324965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two novel metamaterial devices including Split Ring Resonator (SRR) modulator and Surface Plasmon Polariton (SPP) interconnect (including SPP T-line and coupler) are proposed with CMOS on-chip integration operated at 140GHz. By introducing sub-wavelength periodical corrugation structure onto T-line, SPP is established to propagate signals with strongly localized surface wave, which results in low crosstalk between two back-to-back placed SPP T-lines. Moreover, by stacking two SRR unit-cells with opposite placement, the SRR based modulator manifests itself as a magnetic metamaterial achieving significant reduction of radiation loss with 23dB extinction ratio at sub-THz. As explored in 65nm CMOS, the proposed surface-wave interconnects and SRR modulator have shown great potential for future sub-THz wireline communication in CMOS.\",\"PeriodicalId\":6625,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"volume\":\"124 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-AMP.2015.7324965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-AMP.2015.7324965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMOS sub-THz on-chip communication with SRR modulator and SPP interconnect
Two novel metamaterial devices including Split Ring Resonator (SRR) modulator and Surface Plasmon Polariton (SPP) interconnect (including SPP T-line and coupler) are proposed with CMOS on-chip integration operated at 140GHz. By introducing sub-wavelength periodical corrugation structure onto T-line, SPP is established to propagate signals with strongly localized surface wave, which results in low crosstalk between two back-to-back placed SPP T-lines. Moreover, by stacking two SRR unit-cells with opposite placement, the SRR based modulator manifests itself as a magnetic metamaterial achieving significant reduction of radiation loss with 23dB extinction ratio at sub-THz. As explored in 65nm CMOS, the proposed surface-wave interconnects and SRR modulator have shown great potential for future sub-THz wireline communication in CMOS.