基于神经进化的交通标志数据集卷积神经网络设计

Genevieve Sapijaszko, W. Mikhael
{"title":"基于神经进化的交通标志数据集卷积神经网络设计","authors":"Genevieve Sapijaszko, W. Mikhael","doi":"10.1109/MWSCAS47672.2021.9531782","DOIUrl":null,"url":null,"abstract":"Image recognition systems are critical components in numerous applications, often requiring real-time implementations that are both fast and accurate. Convolutional Neural Networks (CNNs) are an emerging tool used to meet these conditions. However, in image recognition, CNNs are often designed to fit general image datasets leading to implementations that may have more layers and nodes than are warranted in particular applications. In this paper, a neuroevolution algorithm is developed to reduce a CNN architecture’s complexity by determining the minimal CNN structure and hyperparameters needed to fit a traffic sign dataset. A neuroevolution algorithm is employed to tune the CNN’s parameters and topology to enable a more efficient parameter space search. Results show that despite reducing complexity, the system still maintains high recognition accuracy compared to popular CNNs, such as AlexNet, VGGNet 16, VGGNet 19, GoogleNet, ResNet 50, and ResNet 101.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"34 1","pages":"305-308"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Convolutional Neural Networks Using Neuroevolution for Traffic Sign Datasets\",\"authors\":\"Genevieve Sapijaszko, W. Mikhael\",\"doi\":\"10.1109/MWSCAS47672.2021.9531782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image recognition systems are critical components in numerous applications, often requiring real-time implementations that are both fast and accurate. Convolutional Neural Networks (CNNs) are an emerging tool used to meet these conditions. However, in image recognition, CNNs are often designed to fit general image datasets leading to implementations that may have more layers and nodes than are warranted in particular applications. In this paper, a neuroevolution algorithm is developed to reduce a CNN architecture’s complexity by determining the minimal CNN structure and hyperparameters needed to fit a traffic sign dataset. A neuroevolution algorithm is employed to tune the CNN’s parameters and topology to enable a more efficient parameter space search. Results show that despite reducing complexity, the system still maintains high recognition accuracy compared to popular CNNs, such as AlexNet, VGGNet 16, VGGNet 19, GoogleNet, ResNet 50, and ResNet 101.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"34 1\",\"pages\":\"305-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像识别系统是许多应用程序中的关键组件,通常需要快速准确的实时实现。卷积神经网络(cnn)是用来满足这些条件的新兴工具。然而,在图像识别中,cnn通常被设计为适合一般的图像数据集,导致实现可能具有比特定应用所需的更多的层和节点。本文开发了一种神经进化算法,通过确定拟合交通标志数据集所需的最小CNN结构和超参数来降低CNN架构的复杂性。采用神经进化算法调整CNN的参数和拓扑结构,使其能够更有效地进行参数空间搜索。结果表明,与AlexNet、VGGNet 16、VGGNet 19、GoogleNet、ResNet 50和ResNet 101等流行的cnn相比,该系统在降低复杂性的同时,仍然保持了较高的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Convolutional Neural Networks Using Neuroevolution for Traffic Sign Datasets
Image recognition systems are critical components in numerous applications, often requiring real-time implementations that are both fast and accurate. Convolutional Neural Networks (CNNs) are an emerging tool used to meet these conditions. However, in image recognition, CNNs are often designed to fit general image datasets leading to implementations that may have more layers and nodes than are warranted in particular applications. In this paper, a neuroevolution algorithm is developed to reduce a CNN architecture’s complexity by determining the minimal CNN structure and hyperparameters needed to fit a traffic sign dataset. A neuroevolution algorithm is employed to tune the CNN’s parameters and topology to enable a more efficient parameter space search. Results show that despite reducing complexity, the system still maintains high recognition accuracy compared to popular CNNs, such as AlexNet, VGGNet 16, VGGNet 19, GoogleNet, ResNet 50, and ResNet 101.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1