M. Shirasaki, Naonori S. Sugiyama, R. Takahashi, F. Kitaura
{"title":"红移空间用后构造星系双谱约束原初非高斯性","authors":"M. Shirasaki, Naonori S. Sugiyama, R. Takahashi, F. Kitaura","doi":"10.1103/physrevd.103.023506","DOIUrl":null,"url":null,"abstract":"Galaxy bispectrum is a promising probe of inflationary physics in the early universe as a measure of primordial non-Gaussianity (PNG), whereas its signal-to-noise ratio is significantly affected by the mode coupling due to non-linear gravitational growth. In this paper, we examine the standard reconstruction method of linear cosmic mass density fields from non-linear galaxy density fields to de-correlate the covariance in redshift-space galaxy bispectra. In particular, we evaluate the covariance of the bispectrum for massive-galaxy-sized dark matter halos with reconstruction by using 4000 independent $N$-body simulations. Our results show that the bispectrum covariance for the post-reconstructed field approaches the Gaussian prediction at scale of $k<0.2\\, h\\, {\\rm Mpc}^{-1}$. We also verify the leading-order PNG-induced bispectrum is not affected by details of the reconstruction with perturbative theory. We then demonstrate the constraining power of the post-reconstructed bispectrum for PNG at redshift of $\\sim0.5$. Further, we perform a Fisher analysis to make a forecast of PNG constraints by galaxy bispectra including anisotropic signals. Assuming a massive galaxy sample in the SDSS Baryon Oscillation Spectroscopic Survey, we find that the post-reconstructed bispectrum can constrain the local-, equilateral- and orthogonal-types of PNG with $\\Delta f_{\\rm NL} \\sim$13, 90 and 42, respectively, improving the constraints with the pre-reconstructed bispectrum by a factor of $1.3-3.2$. In conclusion, the reconstruction plays an essential role in constraining various types of PNG signatures with a level of $\\Delta f_{\\rm NL}<1$ from the galaxy bispectrum based on upcoming galaxy surveys.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space\",\"authors\":\"M. Shirasaki, Naonori S. Sugiyama, R. Takahashi, F. Kitaura\",\"doi\":\"10.1103/physrevd.103.023506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galaxy bispectrum is a promising probe of inflationary physics in the early universe as a measure of primordial non-Gaussianity (PNG), whereas its signal-to-noise ratio is significantly affected by the mode coupling due to non-linear gravitational growth. In this paper, we examine the standard reconstruction method of linear cosmic mass density fields from non-linear galaxy density fields to de-correlate the covariance in redshift-space galaxy bispectra. In particular, we evaluate the covariance of the bispectrum for massive-galaxy-sized dark matter halos with reconstruction by using 4000 independent $N$-body simulations. Our results show that the bispectrum covariance for the post-reconstructed field approaches the Gaussian prediction at scale of $k<0.2\\\\, h\\\\, {\\\\rm Mpc}^{-1}$. We also verify the leading-order PNG-induced bispectrum is not affected by details of the reconstruction with perturbative theory. We then demonstrate the constraining power of the post-reconstructed bispectrum for PNG at redshift of $\\\\sim0.5$. Further, we perform a Fisher analysis to make a forecast of PNG constraints by galaxy bispectra including anisotropic signals. Assuming a massive galaxy sample in the SDSS Baryon Oscillation Spectroscopic Survey, we find that the post-reconstructed bispectrum can constrain the local-, equilateral- and orthogonal-types of PNG with $\\\\Delta f_{\\\\rm NL} \\\\sim$13, 90 and 42, respectively, improving the constraints with the pre-reconstructed bispectrum by a factor of $1.3-3.2$. In conclusion, the reconstruction plays an essential role in constraining various types of PNG signatures with a level of $\\\\Delta f_{\\\\rm NL}<1$ from the galaxy bispectrum based on upcoming galaxy surveys.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.103.023506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.023506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space
Galaxy bispectrum is a promising probe of inflationary physics in the early universe as a measure of primordial non-Gaussianity (PNG), whereas its signal-to-noise ratio is significantly affected by the mode coupling due to non-linear gravitational growth. In this paper, we examine the standard reconstruction method of linear cosmic mass density fields from non-linear galaxy density fields to de-correlate the covariance in redshift-space galaxy bispectra. In particular, we evaluate the covariance of the bispectrum for massive-galaxy-sized dark matter halos with reconstruction by using 4000 independent $N$-body simulations. Our results show that the bispectrum covariance for the post-reconstructed field approaches the Gaussian prediction at scale of $k<0.2\, h\, {\rm Mpc}^{-1}$. We also verify the leading-order PNG-induced bispectrum is not affected by details of the reconstruction with perturbative theory. We then demonstrate the constraining power of the post-reconstructed bispectrum for PNG at redshift of $\sim0.5$. Further, we perform a Fisher analysis to make a forecast of PNG constraints by galaxy bispectra including anisotropic signals. Assuming a massive galaxy sample in the SDSS Baryon Oscillation Spectroscopic Survey, we find that the post-reconstructed bispectrum can constrain the local-, equilateral- and orthogonal-types of PNG with $\Delta f_{\rm NL} \sim$13, 90 and 42, respectively, improving the constraints with the pre-reconstructed bispectrum by a factor of $1.3-3.2$. In conclusion, the reconstruction plays an essential role in constraining various types of PNG signatures with a level of $\Delta f_{\rm NL}<1$ from the galaxy bispectrum based on upcoming galaxy surveys.