Iaroslav Iaremko, R. Šenkeřík, R. Jašek, Petr Lukastik
{"title":"基于大数据树拓扑结构的机器紧急状态检测的有效数据约简模型","authors":"Iaroslav Iaremko, R. Šenkeřík, R. Jašek, Petr Lukastik","doi":"10.34768/amcs-2021-0041","DOIUrl":null,"url":null,"abstract":"Abstract This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"30 1","pages":"601 - 611"},"PeriodicalIF":1.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An effective data reduction model for machine emergency state detection from big data tree topology structures\",\"authors\":\"Iaroslav Iaremko, R. Šenkeřík, R. Jašek, Petr Lukastik\",\"doi\":\"10.34768/amcs-2021-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"30 1\",\"pages\":\"601 - 611\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2021-0041\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2021-0041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An effective data reduction model for machine emergency state detection from big data tree topology structures
Abstract This work presents an original model for detecting machine tool anomalies and emergency states through operation data processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others. Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and emergency states due to almost real-time data collection from strategically placed sensors and results collected from previous production cycles. The emergency state detection model described in this paper could be beneficial for improving the production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine tools in a real production environment of the Tajmac-ZPS company.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.