S. Kahrobaee, Hossein Norouzi Sahraei, Iman Ahadi Akhlaghi
{"title":"磁滞回线法无损表征热处理H13工具钢的组织和力学性能","authors":"S. Kahrobaee, Hossein Norouzi Sahraei, Iman Ahadi Akhlaghi","doi":"10.1080/09349847.2019.1574942","DOIUrl":null,"url":null,"abstract":"ABSTRACT The aim in this article is to evaluate microstructural changes, hardness variations, and wear behavior of H13 hot work tool steel as a function of austenitizing and tempering temperature using nondestructive magnetic hysteresis loop method. To obtain different microstructural characteristics in the H13 specimens, austenitizing and tempering temperatures were varied in the range of 1,050–1,100°C and 200–650°C, respectively. The microstructural features, hardness, and wear loss were characterized using X-ray diffraction/metallographic examinations, hardness measurements, and a pin-on-disk wear tester, respectively. The relations between features obtained from the conventional methods and parameters extracted from the magnetic hysteresis loops were established. Results demonstrate that the proposed nondestructive method is able to assess the wear behavior of the heat treated H13 tool steels. Besides, a standard Generalized Regression Neural Network (GRNN) was trained with a training dataset and then used to estimate the hardness of a given sample with its measured values of magnetic parameters. Experimental results indicate that, if the training dataset has sufficient samples, the proposed method will have a very high accuracy to estimate hardness of the sample, nondestructively.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"1 1","pages":"303 - 315"},"PeriodicalIF":1.0000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Nondestructive Characterization of Microstructure and Mechanical Properties of Heat Treated H13 Tool Steel Using Magnetic Hysteresis Loop Methodology\",\"authors\":\"S. Kahrobaee, Hossein Norouzi Sahraei, Iman Ahadi Akhlaghi\",\"doi\":\"10.1080/09349847.2019.1574942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The aim in this article is to evaluate microstructural changes, hardness variations, and wear behavior of H13 hot work tool steel as a function of austenitizing and tempering temperature using nondestructive magnetic hysteresis loop method. To obtain different microstructural characteristics in the H13 specimens, austenitizing and tempering temperatures were varied in the range of 1,050–1,100°C and 200–650°C, respectively. The microstructural features, hardness, and wear loss were characterized using X-ray diffraction/metallographic examinations, hardness measurements, and a pin-on-disk wear tester, respectively. The relations between features obtained from the conventional methods and parameters extracted from the magnetic hysteresis loops were established. Results demonstrate that the proposed nondestructive method is able to assess the wear behavior of the heat treated H13 tool steels. Besides, a standard Generalized Regression Neural Network (GRNN) was trained with a training dataset and then used to estimate the hardness of a given sample with its measured values of magnetic parameters. Experimental results indicate that, if the training dataset has sufficient samples, the proposed method will have a very high accuracy to estimate hardness of the sample, nondestructively.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"1 1\",\"pages\":\"303 - 315\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2019.1574942\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2019.1574942","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Nondestructive Characterization of Microstructure and Mechanical Properties of Heat Treated H13 Tool Steel Using Magnetic Hysteresis Loop Methodology
ABSTRACT The aim in this article is to evaluate microstructural changes, hardness variations, and wear behavior of H13 hot work tool steel as a function of austenitizing and tempering temperature using nondestructive magnetic hysteresis loop method. To obtain different microstructural characteristics in the H13 specimens, austenitizing and tempering temperatures were varied in the range of 1,050–1,100°C and 200–650°C, respectively. The microstructural features, hardness, and wear loss were characterized using X-ray diffraction/metallographic examinations, hardness measurements, and a pin-on-disk wear tester, respectively. The relations between features obtained from the conventional methods and parameters extracted from the magnetic hysteresis loops were established. Results demonstrate that the proposed nondestructive method is able to assess the wear behavior of the heat treated H13 tool steels. Besides, a standard Generalized Regression Neural Network (GRNN) was trained with a training dataset and then used to estimate the hardness of a given sample with its measured values of magnetic parameters. Experimental results indicate that, if the training dataset has sufficient samples, the proposed method will have a very high accuracy to estimate hardness of the sample, nondestructively.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.