基于索引的AVIRIS-NG高光谱影像中RGB和NIR波段组合不透水面提取

Dwijendra Pandey, Kailash Chandra Tiwari
{"title":"基于索引的AVIRIS-NG高光谱影像中RGB和NIR波段组合不透水面提取","authors":"Dwijendra Pandey, Kailash Chandra Tiwari","doi":"10.1109/InGARSS48198.2020.9358942","DOIUrl":null,"url":null,"abstract":"The remote sensing imageries are helpful in monitoring the urban environment, specifically the growth analysis of urban impervious surfaces as they can provide quick and accurate information about these surfaces over the large geographical areas. The recently developed high spatial and spectral resolution hyperspectral sensors are capable of extracting impervious surfaces with very high accuracy. Therefore, this study utilizes AVIRIS-NG hyperspectral data of Jodhpur, Rajasthan region of India for the analysis. Further, on the basis of existing literature, RGB and NIR bands are selected for generation of three Impervious Surface Index (ISI). The results of the analysis suggest that, Green-NIR combination provides best extraction result with an Overall Accuracy (OA) of 95.20 %, while result of Blue-NIR with OA 90.28 % appears to be better than Red-NIR, which is having OA as 85.29 %. These results have also been verified using histogram plot of various urban land cover classes.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"6 1","pages":"201-204"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Index Based Extraction of Impervious Surfaces Using RGB and NIR Band Combinations in AVIRIS-NG Hyperspectral Imagery\",\"authors\":\"Dwijendra Pandey, Kailash Chandra Tiwari\",\"doi\":\"10.1109/InGARSS48198.2020.9358942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remote sensing imageries are helpful in monitoring the urban environment, specifically the growth analysis of urban impervious surfaces as they can provide quick and accurate information about these surfaces over the large geographical areas. The recently developed high spatial and spectral resolution hyperspectral sensors are capable of extracting impervious surfaces with very high accuracy. Therefore, this study utilizes AVIRIS-NG hyperspectral data of Jodhpur, Rajasthan region of India for the analysis. Further, on the basis of existing literature, RGB and NIR bands are selected for generation of three Impervious Surface Index (ISI). The results of the analysis suggest that, Green-NIR combination provides best extraction result with an Overall Accuracy (OA) of 95.20 %, while result of Blue-NIR with OA 90.28 % appears to be better than Red-NIR, which is having OA as 85.29 %. These results have also been verified using histogram plot of various urban land cover classes.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"6 1\",\"pages\":\"201-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感图像有助于监测城市环境,特别是城市不透水面的增长分析,因为它们可以提供大地理区域内这些表面的快速和准确信息。近年来开发的高空间和光谱分辨率高光谱传感器能够以很高的精度提取不透水表面。因此,本研究利用印度拉贾斯坦邦焦特布尔地区的AVIRIS-NG高光谱数据进行分析。进一步,在已有文献的基础上,选择RGB和NIR波段生成三个不透水面指数(ISI)。分析结果表明,绿-近红外组合提取效果最佳,OA为95.20%,而蓝-近红外组合提取的OA为90.28%,优于红-近红外组合,OA为85.29%。这些结果也通过不同城市土地覆盖等级的直方图进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Index Based Extraction of Impervious Surfaces Using RGB and NIR Band Combinations in AVIRIS-NG Hyperspectral Imagery
The remote sensing imageries are helpful in monitoring the urban environment, specifically the growth analysis of urban impervious surfaces as they can provide quick and accurate information about these surfaces over the large geographical areas. The recently developed high spatial and spectral resolution hyperspectral sensors are capable of extracting impervious surfaces with very high accuracy. Therefore, this study utilizes AVIRIS-NG hyperspectral data of Jodhpur, Rajasthan region of India for the analysis. Further, on the basis of existing literature, RGB and NIR bands are selected for generation of three Impervious Surface Index (ISI). The results of the analysis suggest that, Green-NIR combination provides best extraction result with an Overall Accuracy (OA) of 95.20 %, while result of Blue-NIR with OA 90.28 % appears to be better than Red-NIR, which is having OA as 85.29 %. These results have also been verified using histogram plot of various urban land cover classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1