Jiangtao Sun, A. Chong, S. Tavakoli, Guojin Feng, J. Kanfoud, C. Selcuk, T. Gan
{"title":"复合材料混合超声成像技术的自动质量表征","authors":"Jiangtao Sun, A. Chong, S. Tavakoli, Guojin Feng, J. Kanfoud, C. Selcuk, T. Gan","doi":"10.1080/09349847.2018.1459989","DOIUrl":null,"url":null,"abstract":"ABSTRACT An enhanced technique using image processing has been developed for automated ultrasonic inspection of composite materials, such as glass/carbon-fibre-reinforced polymer (GFRP or CFRP), to ascertain their structural healthiness. The proposed technique is capable of identifying the abnormality features buried in the composite by image filtering and segmentation applied to ultrasonic C-Scan images. This work presents results performed on two composite samples with simulated delamination defects. A local gating scheme is applied to raw A-Scan data for improved contrast between defective and healthy regions in the produced C-Scan image. In this test campaign, different filtering and thresholding algorithms are evaluated and compared in terms of their effectiveness on defect identification. The accuracies of less than 3 mm and 1.11 mm were attained for the defect size and depth, respectively. The results demonstrates the applicability of the proposed technique for accurate defect localization and characterization of composite materials.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"111 1","pages":"205 - 230"},"PeriodicalIF":1.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automated Quality Characterization for Composites Using Hybrid Ultrasonic Imaging Techniques\",\"authors\":\"Jiangtao Sun, A. Chong, S. Tavakoli, Guojin Feng, J. Kanfoud, C. Selcuk, T. Gan\",\"doi\":\"10.1080/09349847.2018.1459989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT An enhanced technique using image processing has been developed for automated ultrasonic inspection of composite materials, such as glass/carbon-fibre-reinforced polymer (GFRP or CFRP), to ascertain their structural healthiness. The proposed technique is capable of identifying the abnormality features buried in the composite by image filtering and segmentation applied to ultrasonic C-Scan images. This work presents results performed on two composite samples with simulated delamination defects. A local gating scheme is applied to raw A-Scan data for improved contrast between defective and healthy regions in the produced C-Scan image. In this test campaign, different filtering and thresholding algorithms are evaluated and compared in terms of their effectiveness on defect identification. The accuracies of less than 3 mm and 1.11 mm were attained for the defect size and depth, respectively. The results demonstrates the applicability of the proposed technique for accurate defect localization and characterization of composite materials.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"111 1\",\"pages\":\"205 - 230\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2018.1459989\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2018.1459989","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Automated Quality Characterization for Composites Using Hybrid Ultrasonic Imaging Techniques
ABSTRACT An enhanced technique using image processing has been developed for automated ultrasonic inspection of composite materials, such as glass/carbon-fibre-reinforced polymer (GFRP or CFRP), to ascertain their structural healthiness. The proposed technique is capable of identifying the abnormality features buried in the composite by image filtering and segmentation applied to ultrasonic C-Scan images. This work presents results performed on two composite samples with simulated delamination defects. A local gating scheme is applied to raw A-Scan data for improved contrast between defective and healthy regions in the produced C-Scan image. In this test campaign, different filtering and thresholding algorithms are evaluated and compared in terms of their effectiveness on defect identification. The accuracies of less than 3 mm and 1.11 mm were attained for the defect size and depth, respectively. The results demonstrates the applicability of the proposed technique for accurate defect localization and characterization of composite materials.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.