Vivek Sharma , Ashish Kumar Tripathi , Purva Daga , Nidhi M. , Himanshu Mittal
{"title":"ClGanNet:基于ClGan和深度CNN的玉米叶片病害识别新方法","authors":"Vivek Sharma , Ashish Kumar Tripathi , Purva Daga , Nidhi M. , Himanshu Mittal","doi":"10.1016/j.image.2023.117074","DOIUrl":null,"url":null,"abstract":"<div><p>With the advancement of technologies, automatic plant leaf disease detection has received considerable attention from researchers working in the area of precision agriculture. A number of deep learning-based methods have been introduced in the literature for automated plant disease detection. However, the majority of datasets collected from real fields have blurred background information, data imbalances, less generalization, and tiny lesion features, which may lead to over-fitting of the model. Moreover, the increased parameter size of deep learning models is also a concern, especially for agricultural applications due to limited resources. In this paper, a novel ClGan (Crop Leaf Gan) with improved loss function has been developed with a reduced number of parameters as compared to the existing state-of-the-art methods. The generator and discriminator of the developed ClGan have been encompassed with an encoder–decoder network to avoid the vanishing gradient problem, training instability, and non-convergence failure while preserving complex intricacies during synthetic image generation with significant lesion differentiation. The proposed improved loss function introduces a dynamic correction factor that stabilizes learning while perpetuating effective weight optimization. In addition, a novel plant leaf classification method ClGanNet, has been introduced to classify plant diseases efficiently. The efficiency of the proposed ClGan was validated on the maize leaf dataset in terms of the number of parameters and FID score, and the results are compared against five other state-of-the-art GAN models namely, DC-GAN, W-GAN, <span><math><mrow><mi>W</mi><mi>G</mi><mi>a</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi><mi>P</mi></mrow></msub></mrow></math></span>, InfoGan, and LeafGan. Moreover, the performance of the proposed classifier, ClGanNet, was evaluated with seven state-of-the-art methods against eight parameters on the original, basic augmented, and ClGan augmented datasets. Experimental results of ClGanNet have outperformed all the considered methods with 99.97% training and 99.04% testing accuracy while using the least number of parameters.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"120 ","pages":"Article 117074"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ClGanNet: A novel method for maize leaf disease identification using ClGan and deep CNN\",\"authors\":\"Vivek Sharma , Ashish Kumar Tripathi , Purva Daga , Nidhi M. , Himanshu Mittal\",\"doi\":\"10.1016/j.image.2023.117074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the advancement of technologies, automatic plant leaf disease detection has received considerable attention from researchers working in the area of precision agriculture. A number of deep learning-based methods have been introduced in the literature for automated plant disease detection. However, the majority of datasets collected from real fields have blurred background information, data imbalances, less generalization, and tiny lesion features, which may lead to over-fitting of the model. Moreover, the increased parameter size of deep learning models is also a concern, especially for agricultural applications due to limited resources. In this paper, a novel ClGan (Crop Leaf Gan) with improved loss function has been developed with a reduced number of parameters as compared to the existing state-of-the-art methods. The generator and discriminator of the developed ClGan have been encompassed with an encoder–decoder network to avoid the vanishing gradient problem, training instability, and non-convergence failure while preserving complex intricacies during synthetic image generation with significant lesion differentiation. The proposed improved loss function introduces a dynamic correction factor that stabilizes learning while perpetuating effective weight optimization. In addition, a novel plant leaf classification method ClGanNet, has been introduced to classify plant diseases efficiently. The efficiency of the proposed ClGan was validated on the maize leaf dataset in terms of the number of parameters and FID score, and the results are compared against five other state-of-the-art GAN models namely, DC-GAN, W-GAN, <span><math><mrow><mi>W</mi><mi>G</mi><mi>a</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi><mi>P</mi></mrow></msub></mrow></math></span>, InfoGan, and LeafGan. Moreover, the performance of the proposed classifier, ClGanNet, was evaluated with seven state-of-the-art methods against eight parameters on the original, basic augmented, and ClGan augmented datasets. Experimental results of ClGanNet have outperformed all the considered methods with 99.97% training and 99.04% testing accuracy while using the least number of parameters.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"120 \",\"pages\":\"Article 117074\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092359652300156X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092359652300156X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
ClGanNet: A novel method for maize leaf disease identification using ClGan and deep CNN
With the advancement of technologies, automatic plant leaf disease detection has received considerable attention from researchers working in the area of precision agriculture. A number of deep learning-based methods have been introduced in the literature for automated plant disease detection. However, the majority of datasets collected from real fields have blurred background information, data imbalances, less generalization, and tiny lesion features, which may lead to over-fitting of the model. Moreover, the increased parameter size of deep learning models is also a concern, especially for agricultural applications due to limited resources. In this paper, a novel ClGan (Crop Leaf Gan) with improved loss function has been developed with a reduced number of parameters as compared to the existing state-of-the-art methods. The generator and discriminator of the developed ClGan have been encompassed with an encoder–decoder network to avoid the vanishing gradient problem, training instability, and non-convergence failure while preserving complex intricacies during synthetic image generation with significant lesion differentiation. The proposed improved loss function introduces a dynamic correction factor that stabilizes learning while perpetuating effective weight optimization. In addition, a novel plant leaf classification method ClGanNet, has been introduced to classify plant diseases efficiently. The efficiency of the proposed ClGan was validated on the maize leaf dataset in terms of the number of parameters and FID score, and the results are compared against five other state-of-the-art GAN models namely, DC-GAN, W-GAN, , InfoGan, and LeafGan. Moreover, the performance of the proposed classifier, ClGanNet, was evaluated with seven state-of-the-art methods against eight parameters on the original, basic augmented, and ClGan augmented datasets. Experimental results of ClGanNet have outperformed all the considered methods with 99.97% training and 99.04% testing accuracy while using the least number of parameters.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.